Difference between revisions of "2022 AMC 12A Problems/Problem 3"

(Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
 +
=Solution 1 (List)=
 +
<asy>
 +
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,mediumgray);
 +
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 +
draw((3,0)--(3,4.5));
 +
draw((0,4.5)--(5.3,4.5));
 +
draw((5.3,7)--(5.3,2.5));
 +
draw((7,2.5)--(3,2.5));
  
 +
label("A",(0,0),S);
 +
label("B",(3,0),S);
 +
label("C",(7,0),S);
 +
label("D",(7.5,3),S);
 +
label("E",(7.5,7.8),S);
 +
label("F",(5.5,7.8),S);
 +
label("G",(-.5,7.8),S);
 +
label("H",(-.5,5),S);
 +
</asy>
 +
 +
 +
By finding the dimensions of the middle rectangle, we need to find the dimensions of the other 4 rectangles. By doing this, there is going to be a rule.
 +
 +
Rule: <math>AB + BC = CD + DE = EF + FG = GH + AH</math>
 +
 +
Let's make a list of all the dimensions of the rectangles from the diagram. We have to fill in the dimensions from up above, but still apply to the rule.
 +
 +
<math>AH\times AB</math>
 +
 +
<math>BC\times CD</math>
 +
 +
<math>DE\times EF</math>
 +
 +
<math>FG\times GH</math>
 +
 +
By applying the rule, we get <math>AB=6, BC=2, CD=7, DE=1, EF=6, FG=2</math>, and <math>GH=3</math>
 +
 +
By substitution, we get this list
 +
 +
<math>5\times 6</math>
 +
 +
<math>2\times 7</math>
 +
 +
<math>1\times 6</math>
 +
 +
<math>2\times 3</math>
 +
 +
Notice how the only dimension not used in the list was <math>2\times 4</math> and that corresponds with B so the answer is, <math>\textbf{(B) }B.</math>
 +
 +
~ghfhgvghj10

Revision as of 15:52, 19 November 2022

Solution 1 (List)

[asy] fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,mediumgray); draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0)); draw((3,0)--(3,4.5)); draw((0,4.5)--(5.3,4.5)); draw((5.3,7)--(5.3,2.5)); draw((7,2.5)--(3,2.5));  label("A",(0,0),S); label("B",(3,0),S); label("C",(7,0),S); label("D",(7.5,3),S); label("E",(7.5,7.8),S); label("F",(5.5,7.8),S); label("G",(-.5,7.8),S); label("H",(-.5,5),S); [/asy]


By finding the dimensions of the middle rectangle, we need to find the dimensions of the other 4 rectangles. By doing this, there is going to be a rule.

Rule: $AB + BC = CD + DE = EF + FG = GH + AH$

Let's make a list of all the dimensions of the rectangles from the diagram. We have to fill in the dimensions from up above, but still apply to the rule.

$AH\times AB$

$BC\times CD$

$DE\times EF$

$FG\times GH$

By applying the rule, we get $AB=6, BC=2, CD=7, DE=1, EF=6, FG=2$, and $GH=3$

By substitution, we get this list

$5\times 6$

$2\times 7$

$1\times 6$

$2\times 3$

Notice how the only dimension not used in the list was $2\times 4$ and that corresponds with B so the answer is, $\textbf{(B) }B.$

~ghfhgvghj10