Difference between revisions of "2017 AMC 12A Problems/Problem 21"
m (→Solution 2 (If you are short on time)) |
m (→Solution 3 (If you are also short on time)) |
||
Line 32: | Line 32: | ||
with each <math>a_i</math> in <math>S</math>. <math>x</math> is a factor of <math>a_0</math>, and <math>a_0</math> is in <math>S</math>, so <math>x</math> has to be a factor of some element in <math>S</math>. There are no such integers left, so there can be no more additional elements. <math>\{-10,-5,-2,-1,0,1,2,5,10\}</math> has <math>9</math> elements <math>\to \boxed{\textbf{(D)}}</math> | with each <math>a_i</math> in <math>S</math>. <math>x</math> is a factor of <math>a_0</math>, and <math>a_0</math> is in <math>S</math>, so <math>x</math> has to be a factor of some element in <math>S</math>. There are no such integers left, so there can be no more additional elements. <math>\{-10,-5,-2,-1,0,1,2,5,10\}</math> has <math>9</math> elements <math>\to \boxed{\textbf{(D)}}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Video Solution by Richard Rusczyk == | == Video Solution by Richard Rusczyk == |
Revision as of 19:20, 15 November 2022
Problem
A set is constructed as follows. To begin, . Repeatedly, as long as possible, if is an integer root of some polynomial for some , all of whose coefficients are elements of , then is put into . When no more elements can be added to , how many elements does have?
Solution
At first, .
At this point, no more elements can be added to . To see this, let
with each in . is a factor of , and is in , so has to be a factor of some element in . There are no such integers left, so there can be no more additional elements. has elements
Video Solution by Richard Rusczyk
https://www.youtube.com/watch?v=hSYSNBVPLhE&list=PLyhPcpM8aMvLZmuDnM-0vrFniLpo7Orbp&index=1 - AMBRIGGS
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.