Difference between revisions of "2020 AMC 10A Problems/Problem 3"

(Problem)
(Video Solution 5)
Line 42: Line 42:
 
https://youtu.be/ba6w1OhXqOQ?t=956
 
https://youtu.be/ba6w1OhXqOQ?t=956
  
~ pi_is_3.14
+
~ pi_is_3.14 ~
  
 
== See Also ==
 
== See Also ==
 
{{AMC10 box|year=2020|ab=A|num-b=2|num-a=4}}
 
{{AMC10 box|year=2020|ab=A|num-b=2|num-a=4}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 09:46, 7 October 2022

Problem

Assuming $a\neq3$, $b\neq4$, and $c\neq5$, what is the value in simplest form of the following expression \[\frac{a-3}{5-c} \cdot \frac{b-4}{3-a} \cdot \frac{c-5}{4-b}\]

$\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } \frac{abc}{60} \qquad \textbf{(D) } \frac{1}{abc} - \frac{1}{60} \qquad \textbf{(E) } \frac{1}{60} - \frac{1}{abc}$

Solution 1 (Negatives)

If $x\neq y,$ then $\frac{x-y}{y-x}=-1.$ We use this fact to simplify the original expression: \[\frac{\color{red}\overset{-1}{\cancel{a-3}}}{\color{blue}\underset{1}{\cancel{5-c}}} \cdot \frac{\color{green}\overset{-1}{\cancel{b-4}}}{\color{red}\underset{1}{\cancel{3-a}}} \cdot \frac{\color{blue}\overset{-1}{\cancel{c-5}}}{\color{green}\underset{1}{\cancel{4-b}}}=(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}.\] ~CoolJupiter ~MRENTHUSIASM

Solution 2 (Answer Choices)

At $(a,b,c)=(4,5,6),$ the answer choices become

$\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } 2 \qquad \textbf{(D) } -\frac{1}{120} \qquad \textbf{(E) } \frac{1}{120}$

and the original expression becomes \[\frac{-1}{1}\cdot\frac{-1}{1}\cdot\frac{-1}{1}=\boxed{\textbf{(A) } -1}.\] ~MRENTHUSIASM

Video Solution 1

https://youtu.be/WUcbVNy2uv0

~IceMatrix

Video Solution 2

https://youtu.be/Nrdxe4UAqkA

Education, The Study of Everything

Video Solution 3

https://www.youtube.com/watch?v=7-3sl1pSojc

~bobthefam

Video Solution 4

https://youtu.be/ZccL6yKrTiU

~savannahsolver

Video Solution 5

https://youtu.be/ba6w1OhXqOQ?t=956

~ pi_is_3.14 ~

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png