Difference between revisions of "2008 AMC 8 Problems/Problem 22"

m
Line 8: Line 8:
 
\textbf{(E)}\ 34</math>
 
\textbf{(E)}\ 34</math>
  
==Video Solution==
+
==Solution 1==
https://youtu.be/rQUwNC0gqdg?t=230
 
 
 
==Solution 2==
 
 
Instead of finding n, we find <math>x=\frac{n}{3}</math>. We want <math>x</math> and <math>9x</math> to be three-digit whole numbers. The smallest three-digit whole number is <math>100</math>, so that is our minimum value for <math>x</math>, since if <math>x \in \mathbb{Z^+}</math>, then <math>9x \in \mathbb{Z^+}</math>. The largest three-digit whole number divisible by <math>9</math> is <math>999</math>, so our maximum value for <math>x</math> is <math>\frac{999}{9}=111</math>. There are <math>12</math> whole numbers in the closed set <math>\left[100,111\right]</math> , so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
 
Instead of finding n, we find <math>x=\frac{n}{3}</math>. We want <math>x</math> and <math>9x</math> to be three-digit whole numbers. The smallest three-digit whole number is <math>100</math>, so that is our minimum value for <math>x</math>, since if <math>x \in \mathbb{Z^+}</math>, then <math>9x \in \mathbb{Z^+}</math>. The largest three-digit whole number divisible by <math>9</math> is <math>999</math>, so our maximum value for <math>x</math> is <math>\frac{999}{9}=111</math>. There are <math>12</math> whole numbers in the closed set <math>\left[100,111\right]</math> , so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
  
 
- ColtsFan10
 
- ColtsFan10
  
==Solution 3==
+
==Solution 2==
 
   
 
   
 
We can set the following inequalities up to satisfy the conditions given by the question,
 
We can set the following inequalities up to satisfy the conditions given by the question,
Line 27: Line 24:
  
 
- kn07
 
- kn07
 +
 +
==Video Solution==
 +
https://youtu.be/rQUwNC0gqdg?t=230
 +
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2008|num-b=21|num-a=23}}
 
{{AMC8 box|year=2008|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:14, 4 October 2022

Problem

For how many positive integer values of $n$ are both $\frac{n}{3}$ and $3n$ three-digit whole numbers?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 27\qquad \textbf{(D)}\ 33\qquad \textbf{(E)}\ 34$

Solution 1

Instead of finding n, we find $x=\frac{n}{3}$. We want $x$ and $9x$ to be three-digit whole numbers. The smallest three-digit whole number is $100$, so that is our minimum value for $x$, since if $x \in \mathbb{Z^+}$, then $9x \in \mathbb{Z^+}$. The largest three-digit whole number divisible by $9$ is $999$, so our maximum value for $x$ is $\frac{999}{9}=111$. There are $12$ whole numbers in the closed set $\left[100,111\right]$ , so the answer is $\boxed{\textbf{(A)}\ 12}$.

- ColtsFan10

Solution 2

We can set the following inequalities up to satisfy the conditions given by the question, $100 \leq \frac{n}{3} \leq 999$, and $100 \leq 3n \leq 999$. Once we simplify these and combine the restrictions, we get the inequality, $300 \leq n \leq 333$. Now we have to find all multiples of 3 in this range for $\frac{n}{3}$ to be an integer. We can compute this by setting $\frac{n} {3}=x$, where $x \in \mathbb{Z^+}$. Substituting $x$ for $n$ in the previous inequality, we get, $100 \leq x \leq 111$, and there are $111-100+1$ integers in this range giving us the answer, $\boxed{\textbf{(A)}\ 12}$.

- kn07

Video Solution

https://youtu.be/rQUwNC0gqdg?t=230


See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png