Difference between revisions of "2009 AIME I Problems/Problem 12"
(→See also) (Tag: Blanking) |
|||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | In right <math>\triangle ABC</math> with hypotenuse <math>\overline{AB}</math>, <math>AC = 12</math>, <math>BC = 35</math>, and <math>\overline{CD}</math> is the altitude to <math>\overline{AB}</math>. Let <math>\omega</math> be the circle having <math>\overline{CD}</math> as a diameter. Let <math>I</math> be a point outside <math>\triangle ABC</math> such that <math>\overline{AI}</math> and <math>\overline{BI}</math> are both tangent to circle <math>\omega</math>. The ratio of the perimeter of <math>\triangle ABI</math> to the length <math>AB</math> can be expressed in the form <math>\frac {m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
+ | == Solution == | ||
+ | <asy> | ||
+ | size(13cm, 0); | ||
+ | pair midpoint(pair coord1, pair coord2) { | ||
+ | pair output = ((coord1.x + coord2.x) / 2, (coord1.y + coord2.y) / 2); | ||
+ | return output; | ||
+ | } | ||
+ | |||
+ | real dist(pair coord1, pair coord2) { | ||
+ | real xdiff = coord2.x - coord1.x; | ||
+ | real ydiff = coord2.y - coord1.y; | ||
+ | real num = (xdiff * xdiff) + (ydiff * ydiff); | ||
+ | return sqrt(num); | ||
+ | } | ||
+ | |||
+ | pair C = (0, 0); | ||
+ | pair B = (35, 0); | ||
+ | pair A = (0, 12); | ||
+ | pair O = (210/37 * 12/37, 210/37*35/37); | ||
+ | draw(A -- B -- C -- A); | ||
+ | pair D = (420/37 * 12/37, 420/37 * 35/37); | ||
+ | draw(C -- D); | ||
+ | draw(circle(O, 210/37)); | ||
+ | pair Btan = intersectionpoints(Circle(O, 210/37), Circle(midpoint(B, O), dist(B, O) / 2))[1]; | ||
+ | pair Atan = intersectionpoints(Circle(O, 210/37), Circle(midpoint(A, O), dist(A, O) / 2))[1]; | ||
+ | pair I = extension(A, Atan, B, Btan); | ||
+ | draw(A -- I -- B); | ||
+ | label(A, "A", W); | ||
+ | label(C, "C", S); | ||
+ | label(B, "B", E); | ||
+ | label(I, "I", S); | ||
+ | label(D, "D", N); | ||
+ | label(Atan, "E", W); | ||
+ | label(Btan, "F", SE); | ||
+ | draw(O -- Atan); | ||
+ | draw(O -- Btan); | ||
+ | dot(O); | ||
+ | label(O, "O", E); | ||
+ | </asy> | ||
+ | Note that <math>AB=37</math>. Thus, <math>CD=\frac{35\cdot 12}{37}=\frac{420}{37}</math>. We also find that <math>AD=\frac{12^2}{37}</math> and <math>BD=\frac{35^2}{37}</math>. From here, we let <math>\angle AOE=\angle AOD=\alpha,</math> <math>\angle BOF=\angle BOD=\beta</math>. Thus, <math>\angle EOF=360^{\circ}-2\alpha-2\beta,</math> so <math>\angle IOE=\angle IOF=180^{\circ}-\alpha-\beta</math>. Observe that | ||
+ | <cmath>\tan \alpha=\frac{AD}{DO}=\frac{\frac{12^2}{37}}{\frac{210}{37}}=\frac{24}{35}</cmath> | ||
+ | and | ||
+ | <cmath>\tan\beta=\frac{\frac{35^2}{37}}{\frac{210}{37}}=\frac{35}{6}.</cmath> | ||
+ | Thus, | ||
+ | <cmath>\begin{align*} | ||
+ | \tan(180^{\circ}-\alpha-\beta)&=-\tan(\alpha+\beta)\\ | ||
+ | &=-\left(\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\right)\\ | ||
+ | &=-\left(\frac{\frac{24}{35}+\frac{35}{6}}{1-\frac{24}{35}\cdot\frac{35}{6}}\right)\\ | ||
+ | &=-\left(\frac{\frac{12^2+35^2}{210}}{1-4}\right)\\ | ||
+ | &=\frac{\frac{37^2}{210}}{3}\\ | ||
+ | &=\frac{37^2}{630}. | ||
+ | \end{align*}</cmath> | ||
+ | However, we also know that <math>\tan(180^{\circ}-\alpha-\beta)=\frac{IF}{OF}=\frac{IE}{OF}.</math> Thus, we get | ||
+ | <cmath>IF=IE=OF\cdot \tan(180^{\circ}-\alpha-\beta)=\frac{210}{37}\cdot\frac{37^2}{630}=\frac{37}{3}.</cmath> | ||
+ | Thus, the perimeter of <math>\triangle AIB</math> is | ||
+ | <cmath>2\left(\frac{12^2}{37}+\frac{35^2}{37}+\frac{37}{3}\right)=2\left(\frac{37^2}{37}+\frac{37}{3}\right),</cmath> | ||
+ | which gives | ||
+ | <cmath>2\left(\frac{37\cdot 4}{3}\right)=\frac{37\cdot 8}{3}.</cmath> | ||
+ | Since <math>AB=37,</math> this means that the ratio of the perimeter of <math>\triangle ABI</math> to <math>AB</math> is just <math>\frac{8}{3},</math> so our answer is | ||
+ | <cmath>8+3=\boxed{11}.</cmath> |
Revision as of 19:29, 3 November 2022
Problem
In right with hypotenuse , , , and is the altitude to . Let be the circle having as a diameter. Let be a point outside such that and are both tangent to circle . The ratio of the perimeter of to the length can be expressed in the form , where and are relatively prime positive integers. Find .
Solution
Note that . Thus, . We also find that and . From here, we let . Thus, so . Observe that and Thus, However, we also know that Thus, we get Thus, the perimeter of is which gives Since this means that the ratio of the perimeter of to is just so our answer is