Difference between revisions of "1978 AHSME Problems/Problem 29"
(→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) }20\qquad \textbf{(B) }40\qquad \textbf{(C) }45\qquad \textbf{(D) }50\qquad \textbf{(E) }60</math> | <math>\textbf{(A) }20\qquad \textbf{(B) }40\qquad \textbf{(C) }45\qquad \textbf{(D) }50\qquad \textbf{(E) }60</math> | ||
==Solution== | ==Solution== | ||
+ | |||
+ | \usepackage{asymptote} | ||
+ | |||
+ | \begin{asy} [asy] | ||
+ | unitsize(1 cm); | ||
+ | |||
+ | pair A, Ap, B, C, P, Q; | ||
+ | |||
+ | A = 3*dir(60); | ||
+ | Ap = (1,0); | ||
+ | B = (0,0); | ||
+ | C = (3,0); | ||
+ | P = 8/5*dir(60); | ||
+ | Q = C + 5/4*dir(120); | ||
+ | |||
+ | draw(B--P--Q--C--cycle); | ||
+ | draw(P--Ap--Q); | ||
+ | draw(P--A--Q,dashed); | ||
+ | |||
+ | label("<math>A</math>", A, N); | ||
+ | label("<math>A'</math>", Ap, S); | ||
+ | label("<math>B</math>", B, SW); | ||
+ | label("<math>C</math>", C, SE); | ||
+ | label("<math>P</math>", P, NW); | ||
+ | label("<math>Q</math>", Q, NE); | ||
+ | [/asy] | ||
+ | \end{asy} | ||
Notice that the area of <math>\triangle</math> <math>DAB</math> is the same as that of <math>\triangle</math> <math>A'AB</math> (same base, same height). Thus, the area of <math>\triangle</math> <math>A'AB</math> is twice that (same height, twice the base). Similarly, [<math>\triangle</math> <math>BB'C</math>] = 2 <math>\cdot</math> [<math>\triangle</math> <math>ABC</math>], and so on. | Notice that the area of <math>\triangle</math> <math>DAB</math> is the same as that of <math>\triangle</math> <math>A'AB</math> (same base, same height). Thus, the area of <math>\triangle</math> <math>A'AB</math> is twice that (same height, twice the base). Similarly, [<math>\triangle</math> <math>BB'C</math>] = 2 <math>\cdot</math> [<math>\triangle</math> <math>ABC</math>], and so on. |
Revision as of 13:14, 23 August 2022
Problem
Sides and , respectively, of convex quadrilateral are extended past and to points and . Also, and ; and the area of is . The area of is
Solution
\usepackage{asymptote}
\begin{asy} [asy] unitsize(1 cm);
pair A, Ap, B, C, P, Q;
A = 3*dir(60); Ap = (1,0); B = (0,0); C = (3,0); P = 8/5*dir(60); Q = C + 5/4*dir(120);
draw(B--P--Q--C--cycle); draw(P--Ap--Q); draw(P--A--Q,dashed);
label("", A, N); label("", Ap, S); label("", B, SW); label("", C, SE); label("", P, NW); label("", Q, NE); [/asy] \end{asy}
Notice that the area of is the same as that of (same base, same height). Thus, the area of is twice that (same height, twice the base). Similarly, [ ] = 2 [ ], and so on.
Adding all of these, we see that the area the four triangles around is twice [ ] + [ ] + [ ] + [ ], which is itself twice the area of the quadrilateral . Finally, [] = [] + 4 [] = 5 [] = .
~ Mathavi
Note: Anyone with a diagram would be of great help (still new to LaTex).