Difference between revisions of "User:Temperal/The Problem Solver's Resource1"
(→==Law of Cosines: header) |
(→=Law of Tangents: header) |
||
Line 101: | Line 101: | ||
<math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R</math> | <math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R</math> | ||
− | ====Law of Tangents=== | + | ====Law of Tangents==== |
For any <math>a</math> and <math>b</math> such that <math>\tan a,\tan b \subset \mathbb{R}</math>, | For any <math>a</math> and <math>b</math> such that <math>\tan a,\tan b \subset \mathbb{R}</math>, |
Revision as of 16:22, 9 October 2007
Trigonometric FormulasNote that all measurements are in degrees, not radians. Basic Facts
Terminology, but $\cot A\ne\tan^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). , but $\csc A\ne\sin^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). , but $\sec A\ne\cos^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). Also:
Sum of Angle Formulas
or or
Pythagorean identities
for all . Other FormulasLaw of CosinesIn a triangle with sides , , and opposite angles , , and , respectively,
and: Law of Sines
Law of TangentsFor any and such that , Area of a TriangleThe area of a triangle can be found by
|