Difference between revisions of "User:Temperal/The Problem Solver's Resource1"
(additional details) |
(→Terminology: mistakes) |
||
Line 57: | Line 57: | ||
Also: | Also: | ||
− | <math>\tan^{-1} A=\atan A=\arctan A</math> | + | <math>\tan^{-1} A=\text{atan } A=\arctan A</math> |
− | <math>\ | + | <math>\cos^{-1} A=\text{acos } A=\arccos A</math> |
+ | |||
+ | <math>\sin^{-1} A=\text{asin } A=\arcsin A</math> | ||
− | |||
===Sum of Angle Formulas=== | ===Sum of Angle Formulas=== | ||
<math>\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B</math> | <math>\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B</math> |
Revision as of 16:21, 9 October 2007
Trigonometric FormulasNote that all measurements are in degrees, not radians. Basic Facts
Terminology, but $\cot A\ne\tan^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). , but $\csc A\ne\sin^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). , but $\sec A\ne\cos^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). Also:
Sum of Angle Formulas
or or
Pythagorean identities
for all . Other Formulas==Law of CosinesIn a triangle with sides , , and opposite angles , , and , respectively,
and: Law of Sines
=Law of TangentsFor any and such that , Area of a TriangleThe area of a triangle can be found by
|