Difference between revisions of "The Apple Method"

m (What is the Apple Method?)
(Examples)
Line 38: Line 38:
 
Simplifying, we find <math>\textcolor{red}{(\textcolor{green}{^{^(}})} = x,</math> so <math>x = \boxed{5}</math>
 
Simplifying, we find <math>\textcolor{red}{(\textcolor{green}{^{^(}})} = x,</math> so <math>x = \boxed{5}</math>
  
3. Evaluate: <cmath>\frac{1^2+2^2+3^2+\cdots}{1^2+3^2+5^2+\cdots}</cmath>
+
3. Evaluate: Evaluate:
 +
<cmath>\frac{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots}{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots}</cmath>
  
 
==Extensions==
 
==Extensions==

Revision as of 12:28, 17 August 2022

What is the Apple Method?

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Why Apple?

A few reasons:

1. When you use the Apple Method, you can box what you are substituting with the apple. When you use $x$ as a substitution, instead of actually boxing it, you are just crossing it out.

2. Apples are easier to draw.

3. Apples are good for you.

4. An Apple a Day Keeps the Doctor Away.

LaTeX code for apple

$(^{^(})$, or if you want some color, $\textcolor{red}{(\textcolor{green}{^{^(}})}$

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $\textcolor{red}{(\textcolor{green}{^{^(}})}^2= 6+\textcolor{red}{(\textcolor{green}{^{^(}})}$.

Solving, we get $\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}$

2. If \[\sqrt{x\cdot\sqrt{x\cdot\sqrt{x\cdots}}} = 5\]

Find x.

$\emph{Solution:}$

If we set $\sqrt{x\cdot\sqrt{x\cdot\sqrt{x\cdots}}}$ equal to $\textcolor{red}{(\textcolor{green}{^{^(}})},$ we get $\textcolor{red}{(\textcolor{green}{^{^(}})} = 5$ and $\textcolor{red}{(\textcolor{green}{^{^(}})}^2 = x \cdot \textcolor{red}{(\textcolor{green}{^{^(}})} = 25.$

Simplifying, we find $\textcolor{red}{(\textcolor{green}{^{^(}})} = x,$ so $x = \boxed{5}$

3. Evaluate: Evaluate: \[\frac{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots}{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots}\]

Extensions

The :) Method

When more than one variable is needed, pears, bananas, stars, and smiley faces are usually used.