Difference between revisions of "2021 Fall AMC 12B Problems/Problem 6"

m (=Video Solution 1)
m (Video Solution by Interstigation=)
Line 19: Line 19:
 
~Steven Chen (www.professorchenedu.com) ~NH14 ~kingofpineapplz ~Arcticturn
 
~Steven Chen (www.professorchenedu.com) ~NH14 ~kingofpineapplz ~Arcticturn
  
=Video Solution by Interstigation==
+
==Video Solution by Interstigation==
 
https://youtu.be/p9_RH4s-kBA?t=1121
 
https://youtu.be/p9_RH4s-kBA?t=1121
 +
 +
==Video Solution==
 +
https://youtu.be/NB6CamKgDaw
 +
 +
~Education, the Study of Everything
  
 
==See Also==
 
==See Also==

Revision as of 17:52, 16 August 2022

The following problem is from both the 2021 Fall AMC 10B #8 and 2021 Fall AMC 12B #6, so both problems redirect to this page.

Problem

The largest prime factor of $16384$ is $2$ because $16384 = 2^{14}$. What is the sum of the digits of the greatest prime number that is a divisor of $16383$?

$\textbf{(A)} \: 3\qquad\textbf{(B)} \: 7\qquad\textbf{(C)} \: 10\qquad\textbf{(D)} \: 16\qquad\textbf{(E)} \: 22$

Solution

We have \begin{align*} 16383 & = 2^{14} - 1 \\ & = \left( 2^7 + 1 \right) \left( 2^7 - 1 \right) \\ & = 129 \cdot 127 \\ & = 3 \cdot 43 \cdot 127. \end{align*}

Therefore, the greatest prime divisor of $16383$ is $127.$ The sum of its digits is $1+2+7=\boxed{\textbf{(C)} \: 10}.$

~Steven Chen (www.professorchenedu.com) ~NH14 ~kingofpineapplz ~Arcticturn

Video Solution by Interstigation

https://youtu.be/p9_RH4s-kBA?t=1121

Video Solution

https://youtu.be/NB6CamKgDaw

~Education, the Study of Everything

See Also

2021 Fall AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2021 Fall AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png