Difference between revisions of "2018 AIME I Problems/Problem 15"
(→Solution 4) |
|||
Line 47: | Line 47: | ||
==Solution 4== | ==Solution 4== | ||
− | Let the sides of the quadrilaterals be <math>a,b,c,</math> and <math>d</math> in some order such that <math>A</math> has <math>a</math> opposite of <math>c</math>, <math>B</math> has <math>a</math> opposite of <math>b</math>, and <math>C</math> has <math>a</math> opposite of <math>d</math>. Then let the diagonals of <math>A</math> be <math>e</math> and <math>f</math>. Similarly to solution <math>2</math>, we get that <math>\tfrac{2}{3}(ac+bd)=\tfrac{3}{5}(ab+cd)=\tfrac{6}{7}(ad+bc)=2K</math>, but this is also equal to <math>2\cdot\tfrac{eab+ecd}{4(1)}=2\cdot\tfrac{fad+fbc}{4(1)}</math> using the area formula for a triangle using the circumradius and the sides, so <math>\tfrac{e(ab+cd)}{2}=\tfrac{3}{5}(ab+cd)</math> and <math>\tfrac{f(ad+bc)}{2}=\tfrac{6}{7}(ad+bc)</math>. Solving for <math>e</math> and <math>f</math>, we get that <math>e=\tfrac{6}{5}</math> and <math>f=\tfrac{12}{7}</math>, but <math>K=\tfrac{1}{2}\cdot\tfrac{2}{3}\cdot{}ef</math>, similarly to solution <math>2</math>, so <math>K=\tfrac{24}{35}</math> and the answer is <math>24+35=\boxed{059}</math>. | + | Let the sides of the quadrilaterals be <math>a,b,c,</math> and <math>d</math> in some order such that <math>A</math> has <math>a</math> opposite of <math>c</math>, <math>B</math> has <math>a</math> opposite of <math>b</math>, and <math>C</math> has <math>a</math> opposite of <math>d</math>. Then, let the diagonals of <math>A</math> be <math>e</math> and <math>f</math>. Similarly to solution <math>2</math>, we get that <math>\tfrac{2}{3}(ac+bd)=\tfrac{3}{5}(ab+cd)=\tfrac{6}{7}(ad+bc)=2K</math>, but this is also equal to <math>2\cdot\tfrac{eab+ecd}{4(1)}=2\cdot\tfrac{fad+fbc}{4(1)}</math> using the area formula for a triangle using the circumradius and the sides, so <math>\tfrac{e(ab+cd)}{2}=\tfrac{3}{5}(ab+cd)</math> and <math>\tfrac{f(ad+bc)}{2}=\tfrac{6}{7}(ad+bc)</math>. Solving for <math>e</math> and <math>f</math>, we get that <math>e=\tfrac{6}{5}</math> and <math>f=\tfrac{12}{7}</math>, but <math>K=\tfrac{1}{2}\cdot\tfrac{2}{3}\cdot{}ef</math>, similarly to solution <math>2</math>, so <math>K=\tfrac{24}{35}</math> and the answer is <math>24+35=\boxed{059}</math>. |
==See Also== | ==See Also== | ||
{{AIME box|year=2018|n=I|num-b=14|after=Last question}} | {{AIME box|year=2018|n=I|num-b=14|after=Last question}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 09:59, 4 August 2022
Problem 15
David found four sticks of different lengths that can be used to form three non-congruent convex cyclic quadrilaterals, , which can each be inscribed in a circle with radius . Let denote the measure of the acute angle made by the diagonals of quadrilateral , and define and similarly. Suppose that , , and . All three quadrilaterals have the same area , which can be written in the form , where and are relatively prime positive integers. Find .
Solution 1
Suppose our four sides lengths cut out arc lengths of , , , and , where . Then, we only have to consider which arc is opposite . These are our three cases, so Our first case involves quadrilateral with , , , and .
Then, by Law of Sines, and . Therefore,
so our answer is .
Note that the conditions of the problem are satisfied when the lengths of the four sticks are about .
By S.B.
Solution 2
Let the four stick lengths be , , , and . WLOG, let’s say that quadrilateral has sides and opposite each other, quadrilateral has sides and opposite each other, and quadrilateral has sides and opposite each other. The area of a convex quadrilateral can be written as , where and are the lengths of the diagonals of the quadrilateral and is the angle formed by the intersection of and . By Ptolemy's theorem for quadrilateral , so, defining as the area of , Similarly, for quadrilaterals and , and Multiplying the three equations and rearranging, we see that The circumradius of a cyclic quadrilateral with side lengths , , , and and area can be computed as . Inserting what we know, So our answer is .
~Solution by divij04
Solution 3 (No words)
Shelomovskii, vvsss, www.deoma-cmd.ru
Solution 4
Let the sides of the quadrilaterals be and in some order such that has opposite of , has opposite of , and has opposite of . Then, let the diagonals of be and . Similarly to solution , we get that , but this is also equal to using the area formula for a triangle using the circumradius and the sides, so and . Solving for and , we get that and , but , similarly to solution , so and the answer is .
See Also
2018 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.