Difference between revisions of "1997 PMWC Problems/Problem I7"

(New page: 27)
 
(sol)
Line 1: Line 1:
27
+
== Problem ==
 +
40% of girls and 50% of boys in a class got 'A'. If there are only 12 students in the class got 'A's and the ratio of boys and girls in the class is 4:5, how many students are there in the class?
 +
 
 +
== Solution ==
 +
<cmath>\frac{2}{5}g + \frac{1}{2}b = 12</cmath>
 +
<cmath>5b = 4g \Longrightarrow b = \frac{4}{5}g</cmath>
 +
 
 +
Substituting, <math>\frac{2}{5}g + \frac{1}{2}\left(\frac 45g\right) = 12 \Longrightarrow \frac{4}{5}g = 12 \Longrightarrow g = 15</math>. So there are 12 boys, and <math>12 + 15 = 27</math> students in the class.
 +
 
 +
== See also ==
 +
{{PMWC box|year=1997|num-b=I6|num-a=I8}}
 +
 
 +
[[Category:Introductory Algebra Problems]]

Revision as of 17:09, 8 October 2007

Problem

40% of girls and 50% of boys in a class got 'A'. If there are only 12 students in the class got 'A's and the ratio of boys and girls in the class is 4:5, how many students are there in the class?

Solution

\[\frac{2}{5}g + \frac{1}{2}b = 12\] \[5b = 4g \Longrightarrow b = \frac{4}{5}g\]

Substituting, $\frac{2}{5}g + \frac{1}{2}\left(\frac 45g\right) = 12 \Longrightarrow \frac{4}{5}g = 12 \Longrightarrow g = 15$. So there are 12 boys, and $12 + 15 = 27$ students in the class.

See also

1997 PMWC (Problems)
Preceded by
Problem I6
Followed by
Problem I8
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T: 1 2 3 4 5 6 7 8 9 10