Difference between revisions of "1982 AHSME Problems/Problem 4"
(→Solution) |
|||
Line 5: | Line 5: | ||
<math>\textbf{(A)} \ \pi \qquad \textbf{(B)} \ \frac{2}{\pi} \qquad \textbf{(C)} \ 1 \qquad \textbf{(D)} \ \frac{1}{2}\qquad \textbf{(E)} \ \frac{4}{\pi}+2</math> | <math>\textbf{(A)} \ \pi \qquad \textbf{(B)} \ \frac{2}{\pi} \qquad \textbf{(C)} \ 1 \qquad \textbf{(D)} \ \frac{1}{2}\qquad \textbf{(E)} \ \frac{4}{\pi}+2</math> | ||
− | + | Option E | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 01:16, 31 July 2022
Problem
The perimeter of a semicircular region, measured in centimeters, is numerically equal to its area, measured in square centimeters. The radius of the semicircle, measured in centimeters, is
Option E