Difference between revisions of "2022 IMO Problems/Problem 5"
(added my own solution) |
|||
Line 47: | Line 47: | ||
- [[User:Xellos|Xellos]] ([[User talk:Xellos|talk]]) 13:31, 23 July 2022 (GMT+2) | - [[User:Xellos|Xellos]] ([[User talk:Xellos|talk]]) 13:31, 23 July 2022 (GMT+2) | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{IMO box|year=2022|num-b=4|num-a=6}} |
Revision as of 00:55, 19 November 2023
Contents
Problem
Find all triples of positive integers with prime and
Video solution
https://www.youtube.com/watch?v=-AII0ldyDww [Video contains solutions to all day 2 problems]
Solution
Case 1:
- Since is indivisible by , then must also be indivisible by .
- If , then is divisible by , so must be a divisor of , but obviously has no solutions and we ruled out already. For , let's show that there are no solutions using simple inequalities.
- If , then and by throwing away the remaining (non-negative) terms of binomial theorem. For any solution, , which is impossible for . That leaves us with and , but for any integer (proof by induction), so there are no solutions.
- If , RHS is at most and LHS is at least (again from binomial theorem), which gives no solutions as well.
Case 2:
- Since is divisible by , then must also be divisible by .
- In addition, RHS is at most , so . We may write , where .
- Since is a divisor of and it must also be a divisor of , so and . We're looking for solutions of .
- Let's factorise : if with odd and , it's
- Since and contain an odd number of odd terms (remember the assumption aka ), they're odd. Also, modulo , so and each following term is even but indivisible by . The highest power of dividing is therefore where is the highest power dividing .
- In comparison, has factors , etc (up to ), and other even factors, so it's divisible at least by . Since for , the only possible solutions have or .
- If , we reuse the inequalities and to show that there are no solutions for .
- Finally, isn't a factorial, and .
Case 3:
Just like in case 2, is divisible by so must also be divisible by . However, and are also both divisible by , so remainders modulo tell us that no solutions exist.
Conclusion:
The only solutions are .
- Xellos (talk) 13:31, 23 July 2022 (GMT+2)
See Also
2022 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |