Difference between revisions of "1969 Canadian MO Problems/Problem 2"
(box) |
|||
Line 9: | Line 9: | ||
Similarly, <math>\sqrt c-\sqrt{c-1}=\frac{1}{\sqrt c-\sqrt{c-1}}</math>. We know that <math>\frac1{\sqrt{c+1}+\sqrt{c}}<\frac{1}{\sqrt c-\sqrt{c-1}}</math> for all positive <math>c</math>, so <math>\sqrt{c+1}-\sqrt c <\sqrt c-\sqrt{c-1}</math>. | Similarly, <math>\sqrt c-\sqrt{c-1}=\frac{1}{\sqrt c-\sqrt{c-1}}</math>. We know that <math>\frac1{\sqrt{c+1}+\sqrt{c}}<\frac{1}{\sqrt c-\sqrt{c-1}}</math> for all positive <math>c</math>, so <math>\sqrt{c+1}-\sqrt c <\sqrt c-\sqrt{c-1}</math>. | ||
− | -- | + | {{Old CanadaMO box|num-b=1|num-a=3|year=1969}} |
− | |||
− | |||
− |