Difference between revisions of "P Adic Solenoid"
(Created page with "The canonical group homomorphisms <center><cmath>\varphi_n:\mathbb{R}/p^{n+1}\mathbb{Z}\to \mathbb{R}/p^n\mathbb{Z},~x\pmod{p^{n+1}\mathbb{Z}}\mapsto x\pmod{p^n\mathbb{Z}}</cm...") |
m |
||
Line 1: | Line 1: | ||
The canonical group homomorphisms | The canonical group homomorphisms | ||
<center><cmath>\varphi_n:\mathbb{R}/p^{n+1}\mathbb{Z}\to \mathbb{R}/p^n\mathbb{Z},~x\pmod{p^{n+1}\mathbb{Z}}\mapsto x\pmod{p^n\mathbb{Z}}</cmath></center> | <center><cmath>\varphi_n:\mathbb{R}/p^{n+1}\mathbb{Z}\to \mathbb{R}/p^n\mathbb{Z},~x\pmod{p^{n+1}\mathbb{Z}}\mapsto x\pmod{p^n\mathbb{Z}}</cmath></center> | ||
− | form a projective system <math>(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}</math> of topological groups. The '''<math>p</math> adic solenoid <math>\mathbb{S}_p</math>''' is a projective limit <math>\mathbb{S}_p=\lim_{\longleftarrow}\mathbb{R}/p^n\mathbb{Z}</math> of the projective system <math>(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}</math>. | + | form a projective system <math>(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}</math> of topological groups. The '''<math>p</math> adic solenoid <math>\mathbb{S}_p</math>''' is a projective limit <math>\mathbb{S}_p=\lim_{\longleftarrow}\mathbb{R}/p^n\mathbb{Z}</math> of the projective system <math>(\mathbb{R}/p^n\mathbb{Z},\varphi_n)_{n\ge 0}</math>. It is both compact and connected. |
Latest revision as of 14:05, 2 July 2022
The canonical group homomorphisms
form a projective system of topological groups. The adic solenoid is a projective limit of the projective system . It is both compact and connected.