Difference between revisions of "Heron's Formula"

(category)
(Proof: \left and \right)
Line 16: Line 16:
 
<math>=\frac{ab}{2}\sqrt{1-\cos^2 C}</math>
 
<math>=\frac{ab}{2}\sqrt{1-\cos^2 C}</math>
  
<math>=\frac{ab}{2}\sqrt{1-(\frac{a^2+b^2-c^2}{2ab})^2}</math>
+
<math>=\frac{ab}{2}\sqrt{1-\left(\frac{a^2+b^2-c^2}{2ab}\right)^2}</math>
  
<math>=\sqrt{\frac{a^2b^2}{4}(1-\frac{(a^2+b^2-c^2)^2}{4a^2b^2})}</math>
+
<math>=\sqrt{\frac{a^2b^2}{4}\left[1-\frac{(a^2+b^2-c^2)^2}{4a^2b^2}\right]}</math>
  
 
<math>=\sqrt{\frac{4a^2b^2-(a^2+b^2-c^2)^2}{16}}</math>
 
<math>=\sqrt{\frac{4a^2b^2-(a^2+b^2-c^2)^2}{16}}</math>
Line 29: Line 29:
  
 
<math>=\sqrt{s(s-a)(s-b)(s-c)}</math>
 
<math>=\sqrt{s(s-a)(s-b)(s-c)}</math>
 
  
 
== See Also ==
 
== See Also ==

Revision as of 16:51, 18 November 2007

Heron's formula (sometimes called Hero's formula) is a formula for finding the area of a triangle given only the three side lengths.

Definition

For any triangle with side lengths ${a}, {b}, {c}$, the area ${A}$ can be found using the following formula:

$A=\sqrt{s(s-a)(s-b)(s-c)}$

where the semi-perimeter $s=\frac{a+b+c}{2}$.


Proof

$[ABC]=\frac{ab}{2}\sin C$

$=\frac{ab}{2}\sqrt{1-\cos^2 C}$

$=\frac{ab}{2}\sqrt{1-\left(\frac{a^2+b^2-c^2}{2ab}\right)^2}$

$=\sqrt{\frac{a^2b^2}{4}\left[1-\frac{(a^2+b^2-c^2)^2}{4a^2b^2}\right]}$

$=\sqrt{\frac{4a^2b^2-(a^2+b^2-c^2)^2}{16}}$

$=\sqrt{\frac{(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)}{16}}$

$=\sqrt{\frac{((a+b)^2-c^2)(c^2-(a-b)^2)}{16}}$

$=\sqrt{\frac{(a+b+c)(a+b-c)(b+c-a)(a+c-b)}{16}}$

$=\sqrt{s(s-a)(s-b)(s-c)}$

See Also