Difference between revisions of "2017 AMC 8 Problems/Problem 1"

m
m (Solution 1)
Line 19: Line 19:
 
E) <math>2 \times 0 \times 1 \times 7 = 0</math>
 
E) <math>2 \times 0 \times 1 \times 7 = 0</math>
  
Ordering these, we get <math>10, 8, 9, 9, 0</math>. Out of these, <math>10</math> is the largest number and option <math>(A)</math> adds up to <math>10</math>. Therefore, the answer is <math>\boxed{\textbf{(A) } 2+0+1+7}</math>- SBose
+
Ordering these, we get <math>10, 8, 9, 9, 0</math>. Out of these, <math>10</math> is the largest number and option <math>(A)</math> adds up to <math>10</math>. Therefore, the answer is <math>\boxed{\textbf{(A) } 2+0+1+7}</math>.
 +
 
 +
- SBose
  
 
==Solution 2==
 
==Solution 2==

Revision as of 04:02, 8 January 2023

Problem

Which of the following values is largest?

$\textbf{(A) }2+0+1+7\qquad\textbf{(B) }2 \times 0 +1+7\qquad\textbf{(C) }2+0 \times 1 + 7\qquad\textbf{(D) }2+0+1 \times 7\qquad\textbf{(E) }2 \times 0 \times 1 \times 7$


Solution 1

We will compute each expression.

A) $2 + 0 + 1 + 7 = 10$

B) $2 \times 0 + 1 + 7 = 8$

C) $2 + 0 \times 1 + 7 = 9$

D) $2 + 0 + 1 \times 7 = 9$

E) $2 \times 0 \times 1 \times 7 = 0$

Ordering these, we get $10, 8, 9, 9, 0$. Out of these, $10$ is the largest number and option $(A)$ adds up to $10$. Therefore, the answer is $\boxed{\textbf{(A) } 2+0+1+7}$.

- SBose

Solution 2

We immediately see that every one of the choices, except for A and D, has a number multiplied by $0$. This will only make the expression's value smaller. We are left with A and D, but in D, $1$ is multiplied by $7$ to get $7$, whereas in answer choice A, we get $8$ out of $7$ and $1$, instead of $7$. Therefore, $\boxed{\textbf{(A) } 2+0+1+7}$ is your answer.

Video Solution

https://youtu.be/cY4NYSAD0vQ

https://youtu.be/o5Aus-6w1vs

~savannahsolver

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png