Difference between revisions of "2017 AMC 10A Problems/Problem 1"
Erics son07 (talk | contribs) (→Solution 4) |
Erics son07 (talk | contribs) m (→Solution 5) |
||
Line 31: | Line 31: | ||
==Solution 5== | ==Solution 5== | ||
− | <math>(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)=(2(2(2(2(2(3)+1)+1)+1)+1)+1)=(2(2(2(2(6+1)+1)+1)+1)+1)=(2(2(2(2(7)+1)+1)+1)+1)=(2(2(2(14+1)+1)+1)+1)=(2(2(2(15)+1)+1)+1)=(2(2(30+1)+1)+1)=(2(2(31)+1)+1)=(2(62+1)+1)=(2(63)+1)=(126+1)=127 \Longrightarrow \boxed{\textbf{(C)}\ 127}</math>. | + | <math>(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)</math> |
+ | <math>=(2(2(2(2(2(3)+1)+1)+1)+1)+1)</math> | ||
+ | <math>=(2(2(2(2(6+1)+1)+1)+1)+1)</math> | ||
+ | <math>=(2(2(2(2(7)+1)+1)+1)+1)</math> | ||
+ | <math>=(2(2(2(14+1)+1)+1)+1)</math> | ||
+ | <math>=(2(2(2(15)+1)+1)+1)</math> | ||
+ | <math>=(2(2(30+1)+1)+1)</math> | ||
+ | <math>=(2(2(31)+1)+1)</math> | ||
+ | <math>=(2(62+1)+1)</math> | ||
+ | <math>=(2(63)+1)</math> | ||
+ | <math>=(126+1)</math> | ||
+ | <math>=127 \Longrightarrow \boxed{\textbf{(C)}\ 127}</math>. | ||
==Video Solution== | ==Video Solution== |
Revision as of 22:45, 13 June 2022
Contents
Problem
What is the value of ?
Solution 1
Notice this is the term in a recursive sequence, defined recursively as Thus:
Minor LaTeX edits by fasterthanlight
Solution 2
Starting to compute the inner expressions, we see the results are . This is always less than a power of . The only admissible answer choice by this rule is thus .
Solution 3
Working our way from the innermost parenthesis outwards and directly computing, we have .
Solution 4
If you distribute this you get a sum of the powers of . The largest power of in the series is , so the sum is .
Solution 5
.
Video Solution
~savannahsolver
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.