Difference between revisions of "2017 AMC 10A Problems/Problem 22"
Erics son07 (talk | contribs) m (→Solution 2) |
Mathboy282 (talk | contribs) m (→Solution 1) |
||
Line 16: | Line 16: | ||
</asy> | </asy> | ||
Let the radius of the circle be <math>r</math>, and let its center be <math>O</math>. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle <math>O</math>, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to <math>r</math>, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - \frac 12 \cdot r\sqrt{3} \cdot \frac{r}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the circle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath> | Let the radius of the circle be <math>r</math>, and let its center be <math>O</math>. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle <math>O</math>, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to <math>r</math>, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - \frac 12 \cdot r\sqrt{3} \cdot \frac{r}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the circle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath> | ||
+ | |||
+ | ===Note=== | ||
+ | The sector angle is 120 because <B and <C are both 90 degrees meaning <B + <C = 180 deg meaning ABCO is cyclic. Thus, the angle is 180-60=120 deg | ||
+ | ~mathboy282 | ||
==Solution 2== | ==Solution 2== |
Revision as of 18:45, 5 September 2022
Problem
Sides and of equilateral triangle are tangent to a circle at points and respectively. What fraction of the area of lies outside the circle?
Solution 1
Let the radius of the circle be , and let its center be . Since and are tangent to circle , then , so . Therefore, since and are equal to , then (pick your favorite method) . The area of the equilateral triangle is , and the area of the sector we are subtracting from it is . The area outside of the circle is . Therefore, the answer is
Note
The sector angle is 120 because <B and <C are both 90 degrees meaning <B + <C = 180 deg meaning ABCO is cyclic. Thus, the angle is 180-60=120 deg ~mathboy282
Solution 2
(same diagram as Solution 1)
Without the Loss of Generality, let the side length of the triangle be .
Then, the area of the triangle is . We are looking for the area of the portion inside the triangle but outside the circle divided by the area of the triangle. Since , and , we know , and . Drop an angle bisector of onto , call the point of intersection . By SAS congruence, , by CPCTC (Congruent Parts of Congruent Triangles are Congruent) and they both measure . By 30-60-90 triangle, . The area of the sector bounded by arc BC is one-third the area of circle O, whose area is . Therefore, the area of the sector bounded by arc BC is .
We are nearly there. By 30-60-90 triangle, we know , so the area of is . The area of the region inside both the triangle and circle is the area of the sector bounded by arc BC minus the area of : . The area of the region outside of the circle but inside the triangle is and the ratio is .
~JH. L
Video Solution
https://www.youtube.com/watch?v=GnJDNtjd57k&feature=youtu.be
https://youtu.be/ADDAOhNAsjQ -Video Solution by Richard Rusczyk
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.