Difference between revisions of "User:Temperal/The Problem Solver's Resource7"

(limits)
(nav)
Line 30: Line 30:
  
  
[[User:Temperal/The Problem Solver's Resource4|Back to page 4]] | [[User:Temperal/The Problem Solver's Resource6|Continue to page 6]]
+
[[User:Temperal/The Problem Solver's Resource6|Back to page 6]] | [[User:Temperal/The Problem Solver's Resource8|Continue to page 8]]
 
|}<br /><br />
 
|}<br /><br />

Revision as of 16:33, 9 October 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 7.

Limits

This section covers limits and some other precalculus topics.

Definition

  • $\lim_{x\to n}f(x)$ is the value that $f(x)$ approaches as $x$ approaches $n$.
  • $\lim_{x\uparrow n}f(x)$ is the value that $f(x)$ approaches as $x$ approaches $n$ from values of $x$ less than $n$.
  • $\lim_{x\downarrow n}f(x)$ is the value that $f(x)$ approaches as $x$ approaches $n$ from values of $x$ more than $n$.
  • If $\lim_{x\to n}f(x)=f(n)$, then $f(x)$ is said to be continuous in $n$.

Theorems and Properties

The statement $\lim_{x\to n}f(x)=L$ is equivalent to: given a positive number $\epsilon$, there is a positive number $\gamma$ such that $0<|x-n|<\gamma\Rightarrow |f(x)-L|<\epsilon$.

Let $f$ and $g$ be real functions. Then:

  • $\lim(f+g)(x)=\lim f(x)+\lim g(x)$
  • $\lim(f-g)(x)=\lim f(x)-\lim g(x)$
  • $\lim(f\cdot g)(x)=\lim f(x)\cdot\lim g(x)$
  • $\lim\left(\frac{f}{g}\right)(x)=\frac{\lim f(x)}{\lim g(x)}$

Suppose $f(x)$ is between $g(x)$ and $h(x)$ for all $x$ in the neighborhood of $S$. If $g$ and $h$ approach some common limit L as $x$ approaches $S$, then $\lim_{x\to S}f(x)=L$.


Back to page 6 | Continue to page 8