Difference between revisions of "User:Temperal/The Problem Solver's Resource1"
(→Other Formulas) |
(additional details) |
||
Line 26: | Line 26: | ||
<math>\tan (90-A)=\cot A</math> | <math>\tan (90-A)=\cot A</math> | ||
+ | <math>\sec{90-A}=\csc A</math> | ||
+ | |||
+ | <math>\cos (90-A) = \sin A</math> | ||
+ | |||
+ | <math>\cot (90-A)=\tan A</math> | ||
+ | |||
+ | <math>\csc (90-A)=\sec A</math> | ||
+ | |||
+ | <math>\sin^2 A+\cos^2 A=1</math> | ||
+ | |||
+ | <math>\sec^2 A-\tan^2 A=1</math> | ||
+ | |||
+ | <math>\csc^2 A-\cot^2 A=1</math> | ||
+ | |||
+ | <math>\tan A=\frac{\sin A}{\cos A}</math> | ||
+ | |||
+ | <math>\sin^2 \frac{A}{2}=\frac{1}{2}(1-\cos A)</math> | ||
+ | |||
+ | <math>\cos^2 \frac{A}{2}=\frac{1}{2}(1+\cos A)</math> | ||
+ | |||
+ | <math>\tan \frac{A}{2}=\frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}</math> | ||
+ | |||
+ | ===Terminology=== | ||
+ | <math>\cot A=\frac{1}{\tan A}</math>, but <math>\cot A\ne\tan^{-1} A}</math>. | ||
+ | |||
+ | <math>\csc A=\frac{1}{\sin A}</math>, but <math>\csc A\ne\sin^{-1} A}</math>. | ||
+ | |||
+ | <math>\sec A=\frac{1}{\sin A}</math>, but <math>\sec A\ne\cos^{-1} A}</math>. | ||
+ | |||
+ | Also: | ||
+ | |||
+ | <math>\tan^{-1} A=\atan A=\arctan A</math> | ||
+ | |||
+ | <math>\tan^{-1} A=\asin A=\arcsin A</math> | ||
+ | |||
+ | <math>\tan^{-1} A=\asin A=\arcsin A</math> | ||
===Sum of Angle Formulas=== | ===Sum of Angle Formulas=== | ||
<math>\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B</math> | <math>\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B</math> | ||
Line 54: | Line 90: | ||
===Other Formulas=== | ===Other Formulas=== | ||
− | + | ====Law of Cosines== | |
In a triangle with sides <math>a</math>, <math>b</math>, and <math>c</math> opposite angles <math>A</math>, <math>B</math>, and <math>C</math>, respectively, | In a triangle with sides <math>a</math>, <math>b</math>, and <math>c</math> opposite angles <math>A</math>, <math>B</math>, and <math>C</math>, respectively, | ||
<math>c^2=a^2+b^2-2bc\cos A</math> | <math>c^2=a^2+b^2-2bc\cos A</math> | ||
− | and | + | and: |
+ | ====Law of Sines==== | ||
<math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R</math> | <math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R</math> | ||
+ | ====Law of Tangents=== | ||
+ | |||
+ | For any <math>a</math> and <math>b</math> such that <math>\tan a,\tan b \subset \mathbb{R}</math>, | ||
+ | <math>\frac{a-b}{a+b}=\frac{\tan(a-b)}{\tan(a+b)}</math> | ||
+ | |||
+ | ====Area of a Triangle==== | ||
The [[area]] of a triangle can be found by | The [[area]] of a triangle can be found by | ||
Revision as of 16:19, 9 October 2007
Trigonometric FormulasNote that all measurements are in degrees, not radians. Basic Facts
Terminology, but $\cot A\ne\tan^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). , but $\csc A\ne\sin^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). , but $\sec A\ne\cos^{-1} A}$ (Error compiling LaTeX. Unknown error_msg). Also: $\tan^{-1} A=\atan A=\arctan A$ (Error compiling LaTeX. Unknown error_msg) $\tan^{-1} A=\asin A=\arcsin A$ (Error compiling LaTeX. Unknown error_msg) $\tan^{-1} A=\asin A=\arcsin A$ (Error compiling LaTeX. Unknown error_msg) Sum of Angle Formulas
or or
Pythagorean identities
for all . Other Formulas==Law of CosinesIn a triangle with sides , , and opposite angles , , and , respectively,
and: Law of Sines
=Law of TangentsFor any and such that , Area of a TriangleThe area of a triangle can be found by
|