Difference between revisions of "2021 AIME I Problems/Problem 13"
Sugar rush (talk | contribs) |
Sugar rush (talk | contribs) m (typo lol) |
||
Line 58: | Line 58: | ||
==Solution 2 (Linearity)== | ==Solution 2 (Linearity)== | ||
− | Let <math>O_{1}</math> and <math>O_{2}</math> be the centers of <math>\omega_{1}</math> and <math>\omega_{2}</math> respectively, and let <math>O</math> be the center of <math>\omega</math>. Then, the distance from <math>O</math> to the radical axis <math>\ell\equiv\overline{AB}</math> of <math>\omega_{1}, \omega_{2}</math> is equal to <math>\frac{1}{2}r</math>. Let <math>x=O_{1}O_{2}</math> and <math>O^{\prime}</math> the orthogonal projection of <math>O</math> onto line <math>\ell</math>. Define the function <math>f:\mathbb{R}^{2}\rightarrow\mathbb{R}</math> by <cmath>f(X)=\text{Pow}_{\omega_{1}}(X)-\text{Pow}_{\omega_{2}}(X).</cmath> Then <cmath>\begin{align*} f(O_{1})=-961^{2}-(x-625)(x+625)&=-x^{2}+625^{2}-961^{2}, \\ f(O_{2})=(x-961)(x+961)-(-625^{2})&=x^{2}+625^{2}-961^{2}, \\ f(O)=r(r+2\cdot961)-r(r+2\cdot625)&=672r, \\ f(O^{\prime})&=0. \end{align*}</cmath> By [https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvMC84LzkzZjZjZmFlMGViY2E3MDMxNWQzY2IzNzFlZTk5NWFmOTM5ZGY1LnBkZg==&rn=TGluZWFyaXR5IG9mIFBvd2VyIG9mIGEgUG9pbnQucGRm Linearity of Power of a Point], <cmath>\frac{f(O_{2})-f(O_{1})}{f(O)-f(O^{\prime})}=\frac{O_{2}O_{1}}{OO^{\prime}}=\frac{x}{\tfrac{1}{2}r}=\frac{2x}{r}.</cmath> Notice that <math>f(O_{2})-f(O_{1})=2x^{2}</math> and <math>f(O)-f(O^{\prime})=672r</math>, thus <cmath>\begin{align*}\frac{2x^{2}}{672r}&=\frac{2x}{r} \\ 2\cdot x^{2}\cdot r&=2\cdot x\cdot 672\cdot r \\ x^{2}&=672\cdot x \\ x&=\boxed{672}\end{align*}</cmath> since <math> | + | Let <math>O_{1}</math> and <math>O_{2}</math> be the centers of <math>\omega_{1}</math> and <math>\omega_{2}</math> respectively, and let <math>O</math> be the center of <math>\omega</math>. Then, the distance from <math>O</math> to the radical axis <math>\ell\equiv\overline{AB}</math> of <math>\omega_{1}, \omega_{2}</math> is equal to <math>\frac{1}{2}r</math>. Let <math>x=O_{1}O_{2}</math> and <math>O^{\prime}</math> the orthogonal projection of <math>O</math> onto line <math>\ell</math>. Define the function <math>f:\mathbb{R}^{2}\rightarrow\mathbb{R}</math> by <cmath>f(X)=\text{Pow}_{\omega_{1}}(X)-\text{Pow}_{\omega_{2}}(X).</cmath> Then <cmath>\begin{align*} f(O_{1})=-961^{2}-(x-625)(x+625)&=-x^{2}+625^{2}-961^{2}, \\ f(O_{2})=(x-961)(x+961)-(-625^{2})&=x^{2}+625^{2}-961^{2}, \\ f(O)=r(r+2\cdot961)-r(r+2\cdot625)&=672r, \\ f(O^{\prime})&=0. \end{align*}</cmath> By [https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvMC84LzkzZjZjZmFlMGViY2E3MDMxNWQzY2IzNzFlZTk5NWFmOTM5ZGY1LnBkZg==&rn=TGluZWFyaXR5IG9mIFBvd2VyIG9mIGEgUG9pbnQucGRm Linearity of Power of a Point], <cmath>\frac{f(O_{2})-f(O_{1})}{f(O)-f(O^{\prime})}=\frac{O_{2}O_{1}}{OO^{\prime}}=\frac{x}{\tfrac{1}{2}r}=\frac{2x}{r}.</cmath> Notice that <math>f(O_{2})-f(O_{1})=2x^{2}</math> and <math>f(O)-f(O^{\prime})=672r</math>, thus <cmath>\begin{align*}\frac{2x^{2}}{672r}&=\frac{2x}{r} \\ 2\cdot x^{2}\cdot r&=2\cdot x\cdot 672\cdot r \\ x^{2}&=672\cdot x \\ x&=\boxed{672}\end{align*}</cmath> since <math>x</math> is nonzero. |
==Solution 3== | ==Solution 3== |
Revision as of 21:17, 7 June 2022
Contents
Problem
Circles and
with radii
and
, respectively, intersect at distinct points
and
. A third circle
is externally tangent to both
and
. Suppose line
intersects
at two points
and
such that the measure of minor arc
is
. Find the distance between the centers of
and
.
Solution 1 (Properties of Radical Axis)
Let and
be the center and radius of
, and let
and
be the center and radius of
.
Since extends to an arc with arc
, the distance from
to
is
. Let
. Consider
. The line
is perpendicular to
and passes through
. Let
be the foot from
to
; so
. We have by tangency
and
. Let
.
Since
is on the radical axis of
and
, it has equal power with respect to both circles, so
since
. Now we can solve for
and
, and in particular,
We want to solve for
. By the Pythagorean Theorem (twice):
Therefore,
.
Solution 2 (Linearity)
Let and
be the centers of
and
respectively, and let
be the center of
. Then, the distance from
to the radical axis
of
is equal to
. Let
and
the orthogonal projection of
onto line
. Define the function
by
Then
By Linearity of Power of a Point,
Notice that
and
, thus
since
is nonzero.
Solution 3
Denote by ,
, and
the centers of
,
, and
, respectively. Let
and
denote the radii of
and
respectively,
be the radius of
, and
the distance from
to the line
. We claim that
where
. This solves the problem, for then the
condition implies
, and then we can solve to get
.
Denote by and
the centers of
and
respectively. Set
as the projection of
onto
, and denote by
the intersection of
with
. Note that
. Now recall that
Furthermore, note that
Substituting the first equality into the second one and subtracting yields
which rearranges to the desired.
Solution 4 (Quick)
Suppose we label the points as shown here. By radical axis, the tangents to at
and
intersect on
. Thus
is harmonic, so the tangents to
at
and
intersect at
. Moreover,
because both
and
are perpendicular to
, and
because
. Thus
by similar triangles.
~mathman3880
Solution 5 (Olympiad Geometry)
Let be the center of
and
the radius of
for
. Let
and
have radius
. Let
be the center of
. Then, the distance between
and the radical axis of
and
is
. It is well-known that the function
is linear (see here) and that to compute it, it suffices to project
onto line
. Moreover,
. Hence, we have
Cancel out
to yield
so the answer is
.
~GeronimoStilton
Video Solution
Who wanted to see animated video solutions can see this. I found this really helpful.
P.S: This video is not made by me. And solution is same like below solutions.
≈@rounak138
See Also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.