Difference between revisions of "User:Temperal/The Problem Solver's Resource6"
(link) |
(topic) |
||
Line 5: | Line 5: | ||
|- | |- | ||
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 6}} | | style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 6}} | ||
− | ==<span style="font-size:20px; color: blue;"> | + | ==<span style="font-size:20px; color: blue;">Number Theory</span>== |
− | This section covers [[modulo | + | This section covers [[number theory]], especially [[modulo]]s (moduli?). |
− | == | + | ==Definitions== |
*<math>n\equiv a\pmod{b}</math> if <math>n</math> is the remainder when <math>a</math> is divided by <math>b</math> to give an integral amount. | *<math>n\equiv a\pmod{b}</math> if <math>n</math> is the remainder when <math>a</math> is divided by <math>b</math> to give an integral amount. | ||
+ | *<math>a|b</math> (or <math>a</math> divides <math>b</math>) if <math>b=ka</math> for some [[integer]] <math>k</math>. | ||
==Special Notation== | ==Special Notation== | ||
Occasionally, if two equivalent expressions are both modulated by the same number, the entire equation will be followed by the modulo. | Occasionally, if two equivalent expressions are both modulated by the same number, the entire equation will be followed by the modulo. | ||
Line 16: | Line 17: | ||
If <math>a\equiv b \pmod{m}</math> and <math>c \equiv d \pmod{m}</math>, then <math>(a+c) \equiv (b+d) \pmod {m}</math>. | If <math>a\equiv b \pmod{m}</math> and <math>c \equiv d \pmod{m}</math>, then <math>(a+c) \equiv (b+d) \pmod {m}</math>. | ||
+ | *<math>a \pmod{m} + b \pmod{m} \equiv (a + b) \pmod{m}</math> | ||
− | <math>a \pmod{m} | + | *<math>a \pmod{m} - b \pmod{m} \equiv (a - b) \pmod{m}</math> |
− | <math>a \pmod{m} | + | *<math>a \pmod{m} \cdot b \pmod{m} \equiv (a \cdot b) \pmod{m} </math> |
− | <math>a \ | + | ===Fermat's Little Theorem=== |
+ | For a prime <math>p</math> and a number <math>a</math> such that <math>a\ne{p}</math>, <math>a^{p-1}\equiv 1 \pmod{p}</math>. | ||
+ | ===Wilson's Theorem=== | ||
+ | For a prime <math>p</math>, <math> (p-1)! \equiv -1 \pmod p</math>. | ||
− | == | + | ===Fermat-Euler Identitity=== |
− | + | If <math>gcd(a,m)=1</math>, then <math>a^{\phi{m}}\equiv1\pmod{m}</math>, where <math>\phi{m}</math> is the number of relatively prime numbers lower than <math>m</math>. | |
− | + | ===Gauss's Theorem=== | |
+ | If <math>a|bc</math> and <math>(a,b) = 1</math>, then <math>a|c</math>. | ||
+ | ===Diverging-Converging Theorem=== | ||
+ | A series <math>\sum_{i=0}^{\infty}S_i</math> converges iff <math>\lim S_i=0</math>. | ||
+ | |||
+ | ===Errata=== | ||
+ | All quadratic residues are <math>0</math> or <math>1\pmod{4}</math>and <math>0</math>, <math>1</math>, or <math>4</math> <math>\pmod{8}</math>. | ||
− | |||
[[User:Temperal/The Problem Solver's Resource5|Back to page 5]] | [[User:Temperal/The Problem Solver's Resource7|Continue to page 7]] | [[User:Temperal/The Problem Solver's Resource5|Back to page 5]] | [[User:Temperal/The Problem Solver's Resource7|Continue to page 7]] | ||
|}<br /><br /> | |}<br /><br /> |
Revision as of 11:12, 23 November 2007
Number TheoryThis section covers number theory, especially modulos (moduli?). Definitions
Special NotationOccasionally, if two equivalent expressions are both modulated by the same number, the entire equation will be followed by the modulo. PropertiesFor any number there will be only one congruent number modulo between and . If and , then . Fermat's Little TheoremFor a prime and a number such that , . Wilson's TheoremFor a prime , . Fermat-Euler IdentitityIf , then , where is the number of relatively prime numbers lower than . Gauss's TheoremIf and , then . Diverging-Converging TheoremA series converges iff . ErrataAll quadratic residues are or and , , or . |