Difference between revisions of "User:Temperal/The Problem Solver's Resource7"

(Factorial)
(combs.)
Line 7: Line 7:
 
==<span style="font-size:20px; color: blue;">Combinatorics</span>==
 
==<span style="font-size:20px; color: blue;">Combinatorics</span>==
 
<!-- will fill in later! -->
 
<!-- will fill in later! -->
==Factorial==
+
===Permutations===
 
The factorial of a number <math>n</math> is <math>n(n-1)(n-2)...(1)</math> or also as <math>\prod_{a=0}^{n-1}(n-a)</math>,and is denoted by <math>n!</math>.
 
The factorial of a number <math>n</math> is <math>n(n-1)(n-2)...(1)</math> or also as <math>\prod_{a=0}^{n-1}(n-a)</math>,and is denoted by <math>n!</math>.
  
 
Also, <math>0!=1</math>.
 
Also, <math>0!=1</math>.
 +
 +
The number of ways of arranging <math>n</math> distinct objects in a straight line is <math>n!</math>. This is also known as a permutation, and can be notated <math>\,_{n}P_{r}</math>
 +
 +
===Combinations===
 +
The number of ways of choosing <math>n</math> objects from a set of <math>r</math> objects is <math>\frac{n!}{r!(n-r)!}</math>, which is notated as either <math>\,_{n}C_{r}</math> or <math>\binom{n}{r}</math>. (The latter notation is also known as taking the binomial coefficient.
 +
 +
===Binomials and Multinomials===
 +
*Binomial Theorem: <math>\displaystyle (x+y)^n=\sum_{r=0}^{n}x^{n-r}y^r</math>
 +
*Multinomial Coefficients: The number of ways of ordering <math>n</math> objects when <math>r_1</math> of them are of one type, <math>r_2</math> of them are of a second type, ... and <math>r_s</math> of them of another type is <math>\frac{n!}{r_1!r_2!...r_s!}</math>
 +
*Multinomial Theorem: <math>(x_1+x_2+x_3...+x_s)^n=\sum \frac{n!}{r_1!r_2!...r_s!} x_1+x_2+x_3...+x_s</math>. The summation is taken over all sums <math>\displaystyle\sum_{i=1}^{s}r_i</math> so that <math>\displaystyle\sum_{i=1}^{s}r_i=n</math>.
  
 
[[User:Temperal/The Problem Solver's Resource6|Back to page 6]] | [[User:Temperal/The Problem Solver's Resource8|Continue to page 8]]
 
[[User:Temperal/The Problem Solver's Resource6|Back to page 6]] | [[User:Temperal/The Problem Solver's Resource8|Continue to page 8]]
 
|}<br /><br />
 
|}<br /><br />

Revision as of 20:37, 5 October 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 7.

Combinatorics

Permutations

The factorial of a number $n$ is $n(n-1)(n-2)...(1)$ or also as $\prod_{a=0}^{n-1}(n-a)$,and is denoted by $n!$.

Also, $0!=1$.

The number of ways of arranging $n$ distinct objects in a straight line is $n!$. This is also known as a permutation, and can be notated $\,_{n}P_{r}$

Combinations

The number of ways of choosing $n$ objects from a set of $r$ objects is $\frac{n!}{r!(n-r)!}$, which is notated as either $\,_{n}C_{r}$ or $\binom{n}{r}$. (The latter notation is also known as taking the binomial coefficient.

Binomials and Multinomials

  • Binomial Theorem: $\displaystyle (x+y)^n=\sum_{r=0}^{n}x^{n-r}y^r$
  • Multinomial Coefficients: The number of ways of ordering $n$ objects when $r_1$ of them are of one type, $r_2$ of them are of a second type, ... and $r_s$ of them of another type is $\frac{n!}{r_1!r_2!...r_s!}$
  • Multinomial Theorem: $(x_1+x_2+x_3...+x_s)^n=\sum \frac{n!}{r_1!r_2!...r_s!} x_1+x_2+x_3...+x_s$. The summation is taken over all sums $\displaystyle\sum_{i=1}^{s}r_i$ so that $\displaystyle\sum_{i=1}^{s}r_i=n$.

Back to page 6 | Continue to page 8