Difference between revisions of "2006 AMC 8 Problems/Problem 19"

m (Video Solution)
Line 21: Line 21:
 
https://youtu.be/HzzzRJEppRA Soo, DRMS, NM
 
https://youtu.be/HzzzRJEppRA Soo, DRMS, NM
  
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/abSgjn4Qs34?t=2124
 +
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2006|n=II|num-b=18|num-a=20}}
 
{{AMC8 box|year=2006|n=II|num-b=18|num-a=20}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:47, 2 January 2023

Problem

Triangle $ABC$ is an isosceles triangle with $\overline{AB}=\overline{BC}$. Point $D$ is the midpoint of both $\overline{BC}$ and $\overline{AE}$, and $\overline{CE}$ is 11 units long. Triangle $ABD$ is congruent to triangle $ECD$. What is the length of $\overline{BD}$?

[asy] size(100); draw((0,0)--(2,4)--(4,0)--(6,4)--cycle--(4,0),linewidth(1)); label("$A$", (0,0), SW); label("$B$", (2,4), N); label("$C$", (4,0), SE); label("$D$", shift(0.2,0.1)*intersectionpoint((0,0)--(6,4),(2,4)--(4,0)), N); label("$E$", (6,4), NE);[/asy]

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 4.5\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 5.5\qquad\textbf{(E)}\ 6$

Solution

Since triangle $ABD$ is congruent to triangle $ECD$ and $\overline{CE} =11$, $\overline{AB}=11$. Since $\overline{AB}=\overline{BC}$, $\overline{BC}=11$. Because point $D$ is the midpoint of $\overline{BC}$, $\overline{BD}=\frac{\overline{BC}}{2}=\frac{11}{2}=\boxed{\textbf{(D)}\ 5.5}$.


Video Solution

https://youtu.be/HzzzRJEppRA Soo, DRMS, NM

Video Solution by OmegaLearn

https://youtu.be/abSgjn4Qs34?t=2124

~ pi_is_3.14

See Also

2006 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png