Difference between revisions of "2022 USAJMO Problems/Problem 6"

(Created page with "==Problem== Let <math>a_0,b_0,c_0</math> be complex numbers, and define <cmath>a_{n+1}=a_n^2+2b_nc_n</cmath> <cmath>b_{n+1}=b_n^2+2c_na_n</cmath> <cmath>c_{n+1}=c_n^2+2a_nb_n...")
 
m
 
Line 11: Line 11:
  
 
==Solution==
 
==Solution==
 +
 +
==See Also==
 +
{{USAJMO newbox|year=2022|num-b=5|after=Last Question}}
 +
{{MAA Notice}}

Latest revision as of 18:05, 6 October 2023

Problem

Let $a_0,b_0,c_0$ be complex numbers, and define

\[a_{n+1}=a_n^2+2b_nc_n\] \[b_{n+1}=b_n^2+2c_na_n\] \[c_{n+1}=c_n^2+2a_nb_n\] for all nonnegative integers $n$.

Suppose that $\max{|a_n|,|b_n|,|c_n|}\leq2022$ for all $n$. Prove that \[|a_0|^2+|b_0|^2+|c_0|^2\leq 1.\]

Solution

See Also

2022 USAJMO (ProblemsResources)
Preceded by
Problem 5
Followed by
Last Question
1 2 3 4 5 6
All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png