Difference between revisions of "2020 AMC 10B Problems/Problem 19"
m (→Solution 6) |
|||
Line 62: | Line 62: | ||
<cmath>1+5+8+A+0+0+A+4+A+A+0=18+4A.</cmath> | <cmath>1+5+8+A+0+0+A+4+A+A+0=18+4A.</cmath> | ||
− | It follows that <math>4A</math> cannot be a multiple of <math>3,</math> ruling out choices <math>(B)</math> and <math>(D).</math> Therefore, our possibilities are <math>A=2,4,</math> and <math>7.</math> Now, notice that <math>\binom{52}{10}</math> is divisible by <math>7.</math> Therefore, we can plug each possible value of <math>A</math> into <math>158A00A4AA0</math> and test for divisibility by <math>7.</math> Conveniently, we see that the first value, <math>A=2,</math> works. Thus, the answer is <math>\boxed{(A) 2}.</math> (To make our argument more rigorous, we can also test divisibility by <math>7</math> for <math>A=4</math> and <math>7</math> to show that these values do not work.) | + | It follows that <math>4A</math> cannot be a multiple of <math>3,</math> ruling out choices <math>(B)</math> and <math>(D).</math> Therefore, our possibilities are <math>A=2,4,</math> and <math>7.</math> Now, notice that <math>\binom{52}{10}</math> is divisible by <math>7.</math> Therefore, we can plug each possible value of <math>A</math> into <math>158A00A4AA0</math> and test for divisibility by <math>7.</math> Conveniently, we see that the first value, <math>A=2,</math> works. Thus, the answer is <math>\boxed{\bold{(A)} 2}.</math> (To make our argument more rigorous, we can also test divisibility by <math>7</math> for <math>A=4</math> and <math>7</math> to show that these values do not work.) |
--vaporwave | --vaporwave |
Revision as of 15:34, 10 April 2022
Contents
Problem
In a certain card game, a player is dealt a hand of cards from a deck of distinct cards. The number of distinct (unordered) hands that can be dealt to the player can be written as . What is the digit ?
Solution 1
We're looking for the amount of ways we can get cards from a deck of , which is represented by .
We need to get rid of the multiples of , which will subsequently get rid of the multiples of (if we didn't, the zeroes would mess with the equation since you can't divide by 0)
, , leaves us with 17.
Converting these into, we have
~quacker88
Solution 2
Since this number is divisible by but not , the last digits must be divisible by but the last digits cannot be divisible by . This narrows the options down to and .
Also, the number cannot be divisible by . Adding up the digits, we get . If , then the expression equals , a multiple of . This would mean that the entire number would be divisible by , which is not what we want. Therefore, the only option is -PCChess
Solution 3
It is not hard to check that divides the number, As , using we have . Thus , implying so the answer is .
Solution 4
As mentioned above,
We can divide both sides of by 10 to obtain
which means is simply the units digit of the left-hand side. This value is
~i_equal_tan_90, revised by emerald_block
Solution 5 (Very Factor Bashy CRT)
We note that: Let . This will help us find the last two digits modulo and modulo . It is obvious that . Also (although this not so obvious), Therefore, . Thus , implying that .
Solution 6
As in Solution 2, we see that
which contains no factors of Therefore, the sum of the digits must not be a multiple of This sum is
It follows that cannot be a multiple of ruling out choices and Therefore, our possibilities are and Now, notice that is divisible by Therefore, we can plug each possible value of into and test for divisibility by Conveniently, we see that the first value, works. Thus, the answer is (To make our argument more rigorous, we can also test divisibility by for and to show that these values do not work.)
--vaporwave
Video Solutions
Video Solution 1
~IceMatrix
Video Solution 2
https://www.youtube.com/watch?v=ApqZFuuQJ18&list=PLLCzevlMcsWNcTZEaxHe8VaccrhubDOlQ&index=6 ~ MathEx
See Also
2020 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.