Difference between revisions of "1997 AIME Problems/Problem 9"
Isabelchen (talk | contribs) |
Isabelchen (talk | contribs) (→Solution 4) |
||
Line 24: | Line 24: | ||
==Solution 4== | ==Solution 4== | ||
− | As Solution 1 stated, <math>a^3 - 2a - 1 = 0</math>. <math>a^3 - 2a - 1 = a^3 - a^2 -a + a^2 -a -1 = (a-1)(a^2 - a - 1) = 0</math>. <math>1 = a^2 - a</math>, <math>\frac1a = a-1</math>, <math>a^3 = 2a+1</math>, <math>a^2 = a+1</math>. | + | As Solution 1 stated, <math>a^3 - 2a - 1 = 0</math>. <math>a^3 - 2a - 1 = a^3 - a^2 -a + a^2 -a -1 = (a-1)(a^2 - a - 1) = 0</math>. <math>a^2 - a - 1 = 0</math>, <math>1 = a^2 - a</math>, <math>\frac1a = a-1</math>, <math>a^3 = 2a+1</math>, <math>a^2 = a+1</math>. |
<math>a^6 = (a^3)^2 = (2a+1)^2= 4a^2 + 4a +1= 4(a+1) + 4a + 1= 8a+5</math> | <math>a^6 = (a^3)^2 = (2a+1)^2= 4a^2 + 4a +1= 4(a+1) + 4a + 1= 8a+5</math> | ||
Line 30: | Line 30: | ||
<math>a^{12} = (a^6)^2 = (8a+5)^2 = 64a^2 + 80a + 25 = 64(a+1) + 80a + 25 = 144a + 89</math> | <math>a^{12} = (a^6)^2 = (8a+5)^2 = 64a^2 + 80a + 25 = 64(a+1) + 80a + 25 = 144a + 89</math> | ||
− | Therefore, <math>a^{12} - 144 a^{-1} = 144a + 89 - 144(a-1) = 89 + 144 | + | Therefore, <math>a^{12} - 144 a^{-1} = 144a + 89 - 144(a-1) = 89 + 144 = \boxed{233}</math> |
− | |||
− | |||
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] |
Revision as of 11:23, 27 March 2022
Problem
Given a nonnegative real number , let denote the fractional part of ; that is, , where denotes the greatest integer less than or equal to . Suppose that is positive, , and . Find the value of .
Solution 1
Looking at the properties of the number, it is immediately guess-able that (the golden ratio) is the answer. The following is the way to derive that:
Since , . Thus , and it follows that . Noting that is a root, this factors to , so (we discard the negative root).
Our answer is . Complex conjugates reduce the second term to . The first term we can expand by the binomial theorem to get . The answer is .
Note that to determine our answer, we could have also used other properties of like .
Solution 2
Find as shown above. Note that, since is a root of the equation , , and . Also note that, since is a root of , . The expression we wish to calculate then becomes . Plugging in , we plug in to get an answer of .
Solution 3
Find as shown above. Note that satisfies the equation (this is the equation we solved to get it). Then, we can simplify as follows using the fibonacci numbers:
So we want since is equivalent to .
Solution 4
As Solution 1 stated, . . , , , , .
Therefore,
See also
1997 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.