Difference between revisions of "2019 AIME I Problems/Problem 13"
(→Solution 6 (Stewart's Theorem Bash)) |
Cooljupiter (talk | contribs) (→Solution 5) |
||
Line 95: | Line 95: | ||
~bluesoul | ~bluesoul | ||
+ | |||
+ | ==Solution 6== | ||
+ | |||
+ | Nice problem! | ||
+ | |||
+ | First, let <math>AE</math> and <math>CF</math> intersect at <math>X</math>. Our motivation here is to introduce cyclic quadrilaterals and find useful relationships in terms of angles. Observe that | ||
+ | <cmath>\angle DFE = \angle XFE - \angle XFD = \angle CBE - \angle CAB = 180 - \angle ABC - \angle CAB = \angle BAC</cmath> | ||
+ | By the so-called "Reverse Law of Cosines" on <math>\triangle ABC</math> we have | ||
+ | <cmath>\cos(\angle BAC) = \frac{4^2 - 5^2 - 6^2}{-2 \cdot 5 \cdot 6} = \frac{3}{4}</cmath> | ||
+ | Applying on <math>\triangle DFE</math> gives | ||
+ | <cmath>DE^2 = 2^2 + 7^2 - 2 \cdot 2 \cdot 7 \cos(\angle DFE)</cmath> | ||
+ | <cmath>= 2^2 + 7^2 - 2 \cdot 2 \cdot 7 \cdot \frac{3}{4}</cmath> | ||
+ | <cmath>=32</cmath> | ||
+ | So <math>DE = 4 \sqrt{2}</math>, now by our cyclic quadrilaterals again, we are motivated by the multiple appearances of similar triangles throughout the figure. We want some that are related to <math>BX</math> and <math>XD</math>, which are crucial lengths in the problem. Suppose <math>BX = r, XD = s</math> for simplicity. We have: | ||
+ | |||
+ | <math>\bullet~~~~\triangle AXC \sim \triangle FXD</math> | ||
+ | <math>\bullet~~~~\triangle BXC \sim \triangle FXE</math> | ||
+ | |||
+ | So | ||
+ | <cmath>\frac{AX}{FX} = \frac{XC}{XD} = \frac{AC}{FD} \implies \frac{4 + r}{FX} = \frac{XC}{s} = 3</cmath> | ||
+ | <cmath>\frac{BX}{FX} = \frac{XC}{XE} = \frac{BC}{FE} \implies \frac{r}{FX} = \frac{XC}{s + 4 \sqrt{2}} = \frac{5}{7}</cmath> | ||
+ | <cmath>\implies \frac{4 + r}{r} = \frac{s + 4 \sqrt{2}}{s} = \frac{21}{5}</cmath> | ||
+ | <cmath>\implies r = \frac{5}{4}, s = \frac{5 \sqrt{2}}{4}</cmath> | ||
+ | So <math>BE = r + s + 4 \sqrt{2} = \frac{5 + 21 \sqrt{2}}{4}</math>. The requested sum is <math>5 + 21 + 2 + 4 = \boxed{032}</math>. | ||
+ | |||
+ | ~CoolJupiter | ||
==See Also== | ==See Also== |
Revision as of 11:27, 2 January 2023
Contents
Problem
Triangle has side lengths , , and . Points and are on ray with . The point is a point of intersection of the circumcircles of and satisfying and . Then can be expressed as , where , , , and are positive integers such that and are relatively prime, and is not divisible by the square of any prime. Find .
Solution 1
Notice that By the Law of Cosines, Then, Let , , and . Then, However, since , , but since , and the requested sum is .
(Solution by TheUltimate123)
Solution 2
Define to be the circumcircle of and to be the circumcircle of .
Because of exterior angles,
But because is cyclic. In addition, because is cyclic. Therefore, . But , so . Using Law of Cosines on , we can figure out that . Since , . We are given that and , so we can use Law of Cosines on to find that .
Let be the intersection of segment and . Using Power of a Point with respect to within , we find that . We can also apply Power of a Point with respect to within to find that . Therefore, .
Note that is similar to . . Also note that is similar to , which gives us . Solving this system of linear equations, we get . Now, we can solve for , which is equal to . This simplifies to , which means our answer is .
Solution 3
Construct and let . Let . Using , Using , it can be found that This also means that . It suffices to find . It is easy to see the following: Using reverse Law of Cosines on , . Using Law of Cosines on gives , so . -franchester
Solution 4 (No <C = <DFE, no LoC)
Let . Let and ; from we have and . From we have giving . So and . These similar triangles also gives us so . Now, Stewart's Theorem on and cevian tells us that so . Then so the answer is as desired. (Solution by Trumpeter, but not added to the Wiki by Trumpeter)
Solution 5
Connect meeting at . We can observe that Getting that . We can also observe that , getting that
Assume that , since , we can get that , getting that
Using Power of Point, we can get that Assume that , getting that
Now applying Law of Cosine on two triangles, separately, we can get two equations
Since , we can use to eliminate the term
Then we can get that , getting
, so the desired answer is , which leads to the answer
~bluesoul
Solution 6
Nice problem!
First, let and intersect at . Our motivation here is to introduce cyclic quadrilaterals and find useful relationships in terms of angles. Observe that By the so-called "Reverse Law of Cosines" on we have Applying on gives So , now by our cyclic quadrilaterals again, we are motivated by the multiple appearances of similar triangles throughout the figure. We want some that are related to and , which are crucial lengths in the problem. Suppose for simplicity. We have:
So So . The requested sum is .
~CoolJupiter
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.