Difference between revisions of "1965 AHSME Problems/Problem 19"
Ahmed ashhab (talk | contribs) (→Solution 1) |
Ahmed ashhab (talk | contribs) (→Solution 1) |
||
Line 12: | Line 12: | ||
Let <math>f(x)=x^3+3x^2+9x+3</math> and <math>g(x)=x^4+4x^3+6px^2+4qx+r</math>. | Let <math>f(x)=x^3+3x^2+9x+3</math> and <math>g(x)=x^4+4x^3+6px^2+4qx+r</math>. | ||
− | Let 3 roots of f(x) be <math>r_1, r_2 </math> and <math>r_3</math>. As <math>f(x)|g(x)</math> , 3 roots of 4 roots of g(x) will be same as roots of f(x). Let the 4th root of g(x) be <math>r_4</math>. By vieta's formula | + | Let 3 roots of <math>f(x)</math> be <math>r_1, r_2 </math> and <math>r_3</math>. As <math>f(x)|g(x)</math> , 3 roots of 4 roots of g(x) will be same as roots of f(x). Let the 4th root of <math>g(x)</math> be <math>r_4</math>. By vieta's formula |
− | In f(x) | + | In <math>f(x)</math> |
<math>r_1+r_2+r_3=-3</math> | <math>r_1+r_2+r_3=-3</math> | ||
Line 22: | Line 22: | ||
<math>r_1r_2r_3=-3</math> | <math>r_1r_2r_3=-3</math> | ||
− | In g(x) | + | In <math>g(x)</math> |
<math>r_1+r_2+r_3+r_4=-4</math> | <math>r_1+r_2+r_3+r_4=-4</math> |
Revision as of 11:17, 26 March 2022
Problem 19
If is exactly divisible by , the value of is:
Solution 1
Let and .
Let 3 roots of be and . As , 3 roots of 4 roots of g(x) will be same as roots of f(x). Let the 4th root of be . By vieta's formula
In
In
so
By ~Ahmed_Ashhab
See Also
1965 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.