Difference between revisions of "2012 AIME II Problems/Problem 2"

(Problem 2)
(Problem 2)
Line 1: Line 1:
== Problem 2 ==
+
Jj
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude
 
 
 
== Solution ==
 
Call the common ratio <math>r.</math> Now since the <math>n</math>th term of a geometric sequence with first term <math>x</math> and common ratio <math>y</math> is <math>xy^{n-1},</math> we see that <math>a_1 \cdot r^{14} = b_1 \cdot r^{10} \implies r^4 = \frac{99}{27} = \frac{11}{3}.</math> But <math>a_9</math> equals <math>a_1 \cdot r^8 = a_1 \cdot (r^4)^2=27\cdot {\left(\frac{11}{3}\right)}^2=27\cdot \frac{121} 9=\boxed{363}</math>.
 
  
 
== See Also ==
 
== See Also ==

Revision as of 17:48, 15 March 2022

Jj

See Also

2012 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png