Difference between revisions of "2002 AMC 12B Problems/Problem 25"
Dairyqueenxd (talk | contribs) (→Solution 1) |
Dairyqueenxd (talk | contribs) (→Solution 2) |
||
Line 33: | Line 33: | ||
Similar to Solution 1, we proceed to get the area of the circle satisfying <math>f(x)+f(y) \le 0</math>, or <math>16 \pi</math>. | Similar to Solution 1, we proceed to get the area of the circle satisfying <math>f(x)+f(y) \le 0</math>, or <math>16 \pi</math>. | ||
− | Since <math>f(x)-f(y) \le 0 \implies f(x) \le f(y)</math>, we have that by symmetry, if <math>(x,y)</math> is in <math>R</math>, then <math>(y,x)</math> is not, and vice versa. Therefore, the shaded part of the circle above the line <math>y=x</math> has the same area as the unshaded part below <math>y=x</math>, and the unshaded part above <math>y=x</math> has the same area as the shaded part below <math>y=x</math>. This means that exactly half the circle is shaded, allowing us to divide by two to get <math>\frac{16 \pi }{2} = \boxed{ | + | Since <math>f(x)-f(y) \le 0 \implies f(x) \le f(y)</math>, we have that by symmetry, if <math>(x,y)</math> is in <math>R</math>, then <math>(y,x)</math> is not, and vice versa. Therefore, the shaded part of the circle above the line <math>y=x</math> has the same area as the unshaded part below <math>y=x</math>, and the unshaded part above <math>y=x</math> has the same area as the shaded part below <math>y=x</math>. This means that exactly half the circle is shaded, allowing us to divide by two to get <math>\frac{16 \pi }{2} = 8\pi \approx \boxed{\textbf{(E) }25}</math>. ~samrocksnature + ddot1 |
+ | |||
== See also == | == See also == | ||
{{AMC12 box|year=2002|ab=B|num-b=24|after=Last problem}} | {{AMC12 box|year=2002|ab=B|num-b=24|after=Last problem}} |
Revision as of 13:48, 7 March 2022
Contents
Problem
Let , and let denote the set of points in the coordinate plane such that The area of is closest to
Solution 1
The first condition gives us that
which is a circle centered at with radius . The second condition gives us that
Thus either
or
Each of those lines passes through and has slope , as shown above. Therefore, the area of is half of the area of the circle, which is .
Solution 2
Similar to Solution 1, we proceed to get the area of the circle satisfying , or .
Since , we have that by symmetry, if is in , then is not, and vice versa. Therefore, the shaded part of the circle above the line has the same area as the unshaded part below , and the unshaded part above has the same area as the shaded part below . This means that exactly half the circle is shaded, allowing us to divide by two to get . ~samrocksnature + ddot1
See also
2002 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.