Difference between revisions of "2022 AIME I Problems/Problem 6"
(→Solution 2) |
MRENTHUSIASM (talk | contribs) m (→Solution 2) |
||
Line 93: | Line 93: | ||
| S | - \left( | A | + | B | + | C | \right) | | S | - \left( | A | + | B | + | C | \right) | ||
& = 276 - \left( 30 + 12 + 6 \right) \\ | & = 276 - \left( 30 + 12 + 6 \right) \\ | ||
− | & = \boxed{ | + | & = \boxed{228} . |
\end{align*} | \end{align*} | ||
</cmath> | </cmath> |
Revision as of 22:42, 17 February 2022
Contents
Problem
Find the number of ordered pairs of integers such that the sequenceis strictly increasing and no set of four (not necessarily consecutive) terms forms an arithmetic progression.
Solution 1
Since and cannot be an arithmetic progression, or can never be . Since and cannot be an arithmetic progression, can never be . Since , there are ways to choose and with these two restrictions in mind.
However, there are still specific invalid cases counted in these pairs . Since cannot form an arithmetic progression, . cannot be an arithmetic progression, so ; however, since this pair was not counted in our , we do not need to subtract it off. cannot form an arithmetic progression, so . cannot form an arithmetic progression, so . cannot form an arithmetic progression, ; however, since this pair was not counted in our (since we disallowed or to be ), we do not to subtract it off.
Also, the sequences , , , , and will never be arithmetic, since that would require and to be non-integers.
So, we need to subtract off progressions from the we counted, to get our final answer of .
~ ihatemath123
Solution 2
Denote .
Denote by a subset of , such that there exists an arithmetic sequence that has 4 terms and includes but not .
Denote by a subset of , such that there exists an arithmetic sequence that has 4 terms and includes but not .
Hence, is a subset of , such that there exists an arithmetic sequence that has 4 terms and includes both and .
Hence, this problem asks us to compute
First, we compute .
We have .
Second, we compute .
: .
We have . Thus, the number of solutions is 21.
: .
We have . Thus, the number of solutions is 9.
Thus, .
Third, we compute .
In , we have . However, because , we have . Thus, .
This implies . Thus, .
Fourth, we compute .
: In the arithmetic sequence, the two numbers beyond and are on the same side of and .
Hence, . Therefore, the number solutions in this case is 3.
: In the arithmetic sequence, the two numbers beyond and are on the opposite sides of and .
: The arithmetic sequence is .
Hence, .
: The arithmetic sequence is .
Hence, .
: The arithmetic sequence is .
Hence, .
Putting two cases together, .
Therefore,
~Steven Chen (www.professorchenedu.com)
See Also
2022 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.