Difference between revisions of "2022 AMC 8 Problems/Problem 12"
Mathfun1000 (talk | contribs) m |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | |||
− | |||
− | |||
− | <math>\textbf{(A) } \dfrac{1}{16}\qquad\textbf{(B) } \dfrac{1}{8}\qquad\textbf{(C) } \dfrac{1}{4}\qquad\textbf{(D) } \dfrac{3}{8}\qquad\textbf{(E) } \dfrac{1}{2}</math> | + | The arrows on the two spinners shown below are spun. Let the number <math>N</math> equal <math>10</math> times the number on Spinner <math>A</math>, added to the number on Spinner <math>B</math>. What is the probability that <math>N</math> is a perfect square number? |
+ | |||
+ | <math>\textbf{(A)} ~\dfrac{1}{16}\qquad\textbf{(B)} ~\dfrac{1}{8}\qquad\textbf{(C)} ~\dfrac{1}{4}\qquad\textbf{(D)} ~\dfrac{3}{8}\qquad\textbf{(E)} ~\dfrac{1}{2}</math> | ||
+ | |||
+ | <asy> | ||
+ | //diagram by pog give me 1 billion dollars for this | ||
+ | size(6cm); | ||
+ | usepackage("mathptmx"); | ||
+ | filldraw(arc((0,0), r=4, angle1=0, angle2=90)--(0,0)--cycle,mediumgray*0.5+gray*0.5); | ||
+ | filldraw(arc((0,0), r=4, angle1=90, angle2=180)--(0,0)--cycle,lightgray); | ||
+ | filldraw(arc((0,0), r=4, angle1=180, angle2=270)--(0,0)--cycle,mediumgray); | ||
+ | filldraw(arc((0,0), r=4, angle1=270, angle2=360)--(0,0)--cycle,lightgray*0.5+mediumgray*0.5); | ||
+ | label("$5$", (-1.5,1.7)); | ||
+ | label("$6$", (1.5,1.7)); | ||
+ | label("$7$", (1.5,-1.7)); | ||
+ | label("$8$", (-1.5,-1.7)); | ||
+ | label("Spinner A", (0, -5.5)); | ||
+ | filldraw(arc((12,0), r=4, angle1=0, angle2=90)--(12,0)--cycle,mediumgray*0.5+gray*0.5); | ||
+ | filldraw(arc((12,0), r=4, angle1=90, angle2=180)--(12,0)--cycle,lightgray); | ||
+ | filldraw(arc((12,0), r=4, angle1=180, angle2=270)--(12,0)--cycle,mediumgray); | ||
+ | filldraw(arc((12,0), r=4, angle1=270, angle2=360)--(12,0)--cycle,lightgray*0.5+mediumgray*0.5); | ||
+ | label("$1$", (10.5,1.7)); | ||
+ | label("$2$", (13.5,1.7)); | ||
+ | label("$3$", (13.5,-1.7)); | ||
+ | label("$4$", (10.5,-1.7)); | ||
+ | label("Spinner B", (12, -5.5)); | ||
+ | </asy> | ||
==Solution== | ==Solution== |
Revision as of 18:03, 28 January 2022
Problem
The arrows on the two spinners shown below are spun. Let the number equal times the number on Spinner , added to the number on Spinner . What is the probability that is a perfect square number?
Solution
First, we realize that there are a total of possibilities. Now, we list all of them that can be spun. This includes and . Then, our answer is .
~MathFun1000
See Also
2022 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.