Difference between revisions of "2021 Fall AMC 12B Problems/Problem 10"
MRENTHUSIASM (talk | contribs) (→Solution 1 (Quick Look for Symmetry): About to combine solutions.) |
MRENTHUSIASM (talk | contribs) |
||
Line 6: | Line 6: | ||
<math>\textbf{(A)} \: 100 \qquad\textbf{(B)} \: 150 \qquad\textbf{(C)} \: 330 \qquad\textbf{(D)} \: 360 \qquad\textbf{(E)} \: 380</math> | <math>\textbf{(A)} \: 100 \qquad\textbf{(B)} \: 150 \qquad\textbf{(C)} \: 330 \qquad\textbf{(D)} \: 360 \qquad\textbf{(E)} \: 380</math> | ||
− | == Solution | + | == Solution == |
Denote <math>A = \left( \cos 40^\circ , \sin 40^\circ \right)</math>, | Denote <math>A = \left( \cos 40^\circ , \sin 40^\circ \right)</math>, | ||
<math>B = \left( \cos 60^\circ , \sin 60^\circ \right)</math>, | <math>B = \left( \cos 60^\circ , \sin 60^\circ \right)</math>, | ||
Line 25: | Line 25: | ||
Therefore, the answer is <math>\boxed{\textbf{(E) }380}</math>. | Therefore, the answer is <math>\boxed{\textbf{(E) }380}</math>. | ||
− | ~Steven Chen (www.professorchenedu.com) | + | ~Steven Chen (www.professorchenedu.com) ~Wilhelm Z ~MRENTHUSIASM |
{{AMC12 box|year=2021 Fall|ab=B|num-a=11|num-b=9}} | {{AMC12 box|year=2021 Fall|ab=B|num-a=11|num-b=9}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:18, 28 January 2022
Problem
What is the sum of all possible values of between and such that the triangle in the coordinate plane whose vertices are is isosceles?
Solution
Denote , , and .
Case 1: .
We have or .
Case 2: .
We have .
Case 3: .
We have .
Therefore, the answer is .
~Steven Chen (www.professorchenedu.com) ~Wilhelm Z ~MRENTHUSIASM
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 9 |
Followed by Problem 11 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.