Difference between revisions of "2006 AIME I Problems"

(Problem 5)
(Problem 6)
Line 32: Line 32:
  
 
== Problem 6 ==
 
== Problem 6 ==
Let <math> \mathcal{S} </math> be the set of real numbers that can be represented as repeating decimals of the form <math> 0.\overline{abc} </math> where <math> a, b, c </math> are distinct digits. Find the sum of the elements of <math> \mathcal{S}. </math>
+
Square <math> ABCD </math> has sides of length 1. Points <math> E </math> and <math> F </math> are on <math> \overline{BC} </math> and <math> \overline{CD}, </math> respectively, so that <math> \triangle AEF </math> is equilateral. A square with vertex <math> B </math> has sides that are parallel to those of <math> ABCD </math> and a vertex on <math> \overline{AE}. </math> The length of a side of this smaller square is <math>\frac{a-\sqrt{b}}{c}, </math> where <math> a, b, </math> and <math> c </math> are positive integers and <math> b</math> is not divisible by the square of any prime. Find <math> a+b+c. </math>
  
 
[[2006 AIME I Problems/Problem 6|Solution]]
 
[[2006 AIME I Problems/Problem 6|Solution]]

Revision as of 13:09, 25 September 2007

Problem 1

In convex hexagon $ABCDEF$, all six sides are congruent, $\angle A$ and $\angle D$ are right angles, and $\angle B, \angle C, \angle E,$ and $\angle F$ are congruent. The area of the hexagonal region is $2116(\sqrt{2}+1).$ Find $AB$.

Solution

Problem 2

The lengths of the sides of a triangle with positive area are $\log_{10} 12$, $\log_{10} 75$, and $\log_{10} n$, where $n$ is a positive integer. Find the number of possible values for $n$.

Solution

Problem 3

Let $P$ be the product of the first 100 positive odd integers. Find the largest integer $k$ such that $P$ is divisible by $3^k$

Solution

Problem 4

Let $(a_1,a_2,a_3,\ldots,a_{12})$ be a permutation of $(1,2,3,\ldots,12)$ for which

$a_1>a_2>a_3>a_4>a_5>a_6 \mathrm{\  and \ } a_6<a_7<a_8<a_9<a_{10}<a_{11}<a_{12}.$

An example of such a permutation is $(6,5,4,3,2,1,7,8,9,10,11,12).$ Find the number of such permutations.

Solution

Problem 5

When rolling a certain unfair six-sided die with faces numbered 1, 2, 3, 4, 5, and 6, the probability of obtaining face $F$ is greater than 1/6, the probability of obtaining the face opposite is less than 1/6, the probability of obtaining any one of the other four faces is 1/6, and the sum of the numbers on opposite faces is 7. When two such dice are rolled, the probability of obtaining a sum of 7 is 47/288. Given that the probability of obtaining face $F$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$


Solution

Problem 6

Square $ABCD$ has sides of length 1. Points $E$ and $F$ are on $\overline{BC}$ and $\overline{CD},$ respectively, so that $\triangle AEF$ is equilateral. A square with vertex $B$ has sides that are parallel to those of $ABCD$ and a vertex on $\overline{AE}.$ The length of a side of this smaller square is $\frac{a-\sqrt{b}}{c},$ where $a, b,$ and $c$ are positive integers and $b$ is not divisible by the square of any prime. Find $a+b+c.$

Solution

Problem 7

An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region $\mathcal{C}$ to the area of shaded region $\mathcal{B}$ is 11/5. Find the ratio of shaded region $\mathcal{D}$ to the area of shaded region $\mathcal{A}.$

2006AimeA7.PNG

Solution

Problem 8

Hexagon $ABCDEF$ is divided into five rhombuses, $\mathcal{P, Q, R, S,}$ and $\mathcal{T,}$ as shown. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}.$ Let $K$ be the area of rhombus $\mathcal{T}.$ Given that $K$ is a positive integer, find the number of possible values for $K.$

2006AimeA8.PNG

Solution

Problem 9

The sequence $a_1, a_2, \ldots$ is geometric with $a_1=a$ and common ratio $r,$ where $a$ and $r$ are positive integers. Given that $\log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006,$ find the number of possible ordered pairs $(a,r).$

Solution

Problem 10

Eight circles of diameter 1 are packed in the first quadrant of the coordinte plane as shown. Let region $\mathcal{R}$ be the union of the eight circular regions. Line $l,$ with slope 3, divides $\mathcal{R}$ into two regions of equal area. Line $l$'s equation can be expressed in the form $ax=by+c,$ where $a, b,$ and $c$ are positive integers whose greatest common divisor is 1. Find $a^2+b^2+c^2.$

2006AimeI10.PNG

Solution

Problem 11

A collection of 8 cubes consists of one cube with edge-length $k$ for each integer $k, 1 \le k \le 8.$ A tower is to be built using all 8 cubes according to the rules:

  • Any cube may be the bottom cube in the tower.
  • The cube immediately on top of a cube with edge-length $k$ must have edge-length at most $k+2.$

Let $T$ be the number of different towers than can be constructed. What is the remainder when $T$ is divided by 1000?

Solution

Problem 12

Find the sum of the values of $x$ such that $\cos^3 3x+ \cos^3 5x = 8 \cos^3 4x \cos^3 x,$ where $x$ is measured in degrees and $100< x< 200.$

Solution

Problem 13

For each even positive integer $x,$ let $g(x)$ denote the greatest power of 2 that divides $x.$ For example, $g(20)=4$ and $g(16)=16.$ For each positive integer $n,$ let $S_n=\sum_{k=1}^{2^{n-1}}g(2k).$ Find the greatest integer $n$ less than 1000 such that $S_n$ is a perfect square.

Solution

Problem 14

A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground In setting up the tripod, the lower 1 foot of one leg breaks off. Let $h$ be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then $h$ can be written in the form $\frac m{\sqrt{n}},$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $\lfloor m+\sqrt{n}\rfloor.$ (The notation $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x.$)

Solution

Problem 15

Given that a sequence satisfies $x_0=0$ and $|x_k|=|x_{k-1}+3|$ for all integers $k\ge 1,$ find the minimum possible value of $|x_1+x_2+\cdots+x_{2006}|.$

Solution

See also