Difference between revisions of "2021 IMO Problems/Problem 4"
Line 34: | Line 34: | ||
==Solution2== | ==Solution2== | ||
Denote <math>AD</math> tangents to the circle <math>I</math> at <math>M</math>, <math>CD</math> tangents to the same circle at <math>N</math>; <math>XB</math> tangents at <math>F</math> and <math>ZB</math> tangents at <math>J</math>. We can get that <math>AD=AM+MD;CD=DN+CN</math>.Since <math>AM=AF,XA=XF-AM;ZC=ZJ-CN</math> Same reason, we can get that <math>DT=TN-DM;DY=YM-DM</math> | Denote <math>AD</math> tangents to the circle <math>I</math> at <math>M</math>, <math>CD</math> tangents to the same circle at <math>N</math>; <math>XB</math> tangents at <math>F</math> and <math>ZB</math> tangents at <math>J</math>. We can get that <math>AD=AM+MD;CD=DN+CN</math>.Since <math>AM=AF,XA=XF-AM;ZC=ZJ-CN</math> Same reason, we can get that <math>DT=TN-DM;DY=YM-DM</math> | ||
− | We can find that <math>AD+XA+DT=XF+TN;CD+DY+ZC=ZJ+YM</math>. Connect <math>IM,IT,IT,IZ,IX,IN,IJ,IF</math> separately, we can create two pairs of congruent triangles. In <math>\ | + | We can find that <math>AD+XA+DT=XF+TN;CD+DY+ZC=ZJ+YM</math>. Connect <math>IM,IT,IT,IZ,IX,IN,IJ,IF</math> separately, we can create two pairs of congruent triangles. In <math>\triangle{XIF},\triangle{YIM}</math>, since <math>\widehat{AI}=\widehat{AI},\angle{FXI}=\angle{MYI}</math> After getting that <math>\angle{IFX}=\angle{IMY};\angle{FXI}=\angle{MYI};IF=IM</math>, we can find that <math>\triangle{IFX}\cong \triangle{IMY}</math>. Getting that <math>YM=XF</math>, same reason, we can get that <math>ZJ=TN</math>. |
Now the only thing left is that we have to prove <math>TX=YZ</math>. Since <math>\widehat{IX}=\widehat{IY};\widehat{IT}=\widehat{IZ}</math> we can subtract and get that <math>\widehat{XT}=\widehat{YZ}</math>,means <math>XT=YZ</math> and we are done | Now the only thing left is that we have to prove <math>TX=YZ</math>. Since <math>\widehat{IX}=\widehat{IY};\widehat{IT}=\widehat{IZ}</math> we can subtract and get that <math>\widehat{XT}=\widehat{YZ}</math>,means <math>XT=YZ</math> and we are done | ||
~bluesoul | ~bluesoul |
Revision as of 13:05, 19 December 2021
Contents
Problem
Let be a circle with centre , and a convex quadrilateral such that each of the segments and is tangent to . Let be the circumcircle of the triangle . The extension of beyond meets at , and the extension of beyond meets at . The extensions of and beyond meet at and , respectively. Prove that
Video Solutions
https://youtu.be/vUftJHRaNx8 [Video contains solutions to all day 2 problems]
https://www.youtube.com/watch?v=U95v_xD5fJk
Solution
Let be the centre of .
For the result follows simply. By Pitot's Theorem we have so that, The configuration becomes symmetric about and the result follows immediately.
Now assume WLOG . Then lies between and in the minor arc and lies between and in the minor arc . Consider the cyclic quadrilateral . We have and . So that, Since is the incenter of quadrilateral , is the angular bisector of . This gives us, Hence the chords and are equal. So is the reflection of about . Hence, and now it suffices to prove Let and be the tangency points of with and respectively. Then by tangents we have, . So . Similarly we get, . So it suffices to prove, Consider the tangent to with . Since and are reflections about and is a circle centred at the tangents and are reflections of each other. Hence By a similar argument on the reflection of and we get and finally, as required.
~BUMSTAKA
Solution2
Denote tangents to the circle at , tangents to the same circle at ; tangents at and tangents at . We can get that .Since Same reason, we can get that We can find that . Connect separately, we can create two pairs of congruent triangles. In , since After getting that , we can find that . Getting that , same reason, we can get that . Now the only thing left is that we have to prove . Since we can subtract and get that ,means and we are done ~bluesoul