Difference between revisions of "Talk:2021 Fall AMC 12B Problems/Problem 17"

(Solution 3)
(Solution 3)
Line 1: Line 1:
 
==Solution 3==
 
==Solution 3==
 +
<math></math>
 
Use generating function, define <math>c_{n}\cdot x^{n}</math> be <math>c_{n}</math> ways for the end point be <math>{n}</math> unit away from the origins.  
 
Use generating function, define <math>c_{n}\cdot x^{n}</math> be <math>c_{n}</math> ways for the end point be <math>{n}</math> unit away from the origins.  
 +
<math></math>
 
Therefore,
 
Therefore,
\\ if the current point is origin, need to <math>\cdot6{x}</math>
+
if the current point is origin, need to <math>\cdot6{x}</math>
 
\\if the current point on vertex of the unit hexagon, need to <math>\cdot(x^{-1}+2)</math>, where there is one way to return to the origin and there are two ways to keep distance = 1
 
\\if the current point on vertex of the unit hexagon, need to <math>\cdot(x^{-1}+2)</math>, where there is one way to return to the origin and there are two ways to keep distance = 1
  
Line 17: Line 19:
 
%
 
%
 
\\-wwei.yu
 
\\-wwei.yu
 +
\end{left}

Revision as of 13:31, 28 November 2021

Solution 3

$$ (Error compiling LaTeX. Unknown error_msg) Use generating function, define $c_{n}\cdot x^{n}$ be $c_{n}$ ways for the end point be ${n}$ unit away from the origins. $$ (Error compiling LaTeX. Unknown error_msg) Therefore, if the current point is origin, need to $\cdot6{x}$ \\if the current point on vertex of the unit hexagon, need to $\cdot(x^{-1}+2)$, where there is one way to return to the origin and there are two ways to keep distance = 1

\\Now let's start \\init $p(x)=1$; \\1st step: $p(x)=6x$\r\n \\2nd step: $p(x)=6x\cdot(x^{-1}+2) = 6 + 12x$ \\3rd step: $p(x)=6\cdot6x + 12x\cdot(x^{-1}+2) = 12 + 60x$ \\4th step: $p(x)=12\cdot6x + 60x\cdot(x^{-1}+2) = 60 + 192x$ \\5th step: $p(x)=60\cdot6x + 192x\cdot(x^{-1}+2) = 192 + 744x$

\\So there are $192+744=936$ ways for the bug never moves more than 1 unit away from orign, and $\frac{936}{6^5} = \boxed{\frac{13}{108}}.$

% \\-wwei.yu \end{left}