Difference between revisions of "Talk:2021 Fall AMC 12B Problems/Problem 17"

(Solution 3)
(Solution 3)
Line 1: Line 1:
 
==Solution 3==
 
==Solution 3==
Use generating function, define <math>{c(n)}*x^{n}</math> be <math>{c(n)}</math> ways for the end point be <math>{n}</math> unit away from the origins.  
+
Use generating function, define <math>c_{n}\cdot x^{n}</math> be <math>c_{n}</math> ways for the end point be <math>{n}</math> unit away from the origins.  
Therefore,  
+
Therefore,
if the current point is origin, need to <math>\cdot6{x}</math>
+
\\ if the current point is origin, need to <math>\cdot6{x}</math>
if the current point on vertex of the unit hexagon, need to <math>\cdot(x^{-1}+2)</math>, where there is one way to return to the origin and there are two ways to keep distance = 1
+
\\if the current point on vertex of the unit hexagon, need to <math>\cdot(x^{-1}+2)</math>, where there is one way to return to the origin and there are two ways to keep distance = 1
  
Now let's start
+
\\Now let's start
init <math>p(x)=1</math>
+
\\init <math>p(x)=1</math>
1st step:  <math>p(x)=6x</math>
+
\\1st step:  <math>p(x)=6x</math>\r\n 
2nd step:  <math>p(x)=6x*(x^{-1}+2) = 6 + 12x </math>
+
\\2nd step:  <math>p(x)=6x\cdot(x^{-1}+2) = 6 + 12x </math>
3rd step:  <math>p(x)=6*6x + 12x*(x^{-1}+2) = 12 + 60x</math>
+
\\3rd step:  <math>p(x)=6\cdot6x + 12x\cdot(x^{-1}+2) = 12 + 60x</math>
4th step:  <math>p(x)=12*6x + 60x*(x^{-1}+2) = 60 + 192x </math>
+
\\4th step:  <math>p(x)=12\cdot6x + 60x\cdot(x^{-1}+2) = 60 + 192x </math>
5th step:  <math>p(x)=60*6x + 192x*(x^{-1}+2) = 192 + 744x </math>
+
\\5th step:  <math>p(x)=60\cdot6x + 192x\cdot(x^{-1}+2) = 192 + 744x </math>
  
So there are <math>192+744=936</math> ways for the bug never moves more than 1 unit away from orign, and <math>\frac{936}{6^5} = \boxed{\frac{13}{108}}.</math>
+
\\So there are <math>192+744=936</math> ways for the bug never moves more than 1 unit away from orign, and <math>\frac{936}{6^5} = \boxed{\frac{13}{108}}.</math>
  
-wwei.yu
+
%
 +
\\-wwei.yu

Revision as of 13:22, 28 November 2021

Solution 3

Use generating function, define $c_{n}\cdot x^{n}$ be $c_{n}$ ways for the end point be ${n}$ unit away from the origins. Therefore, \\ if the current point is origin, need to $\cdot6{x}$ \\if the current point on vertex of the unit hexagon, need to $\cdot(x^{-1}+2)$, where there is one way to return to the origin and there are two ways to keep distance = 1

\\Now let's start \\init $p(x)=1$; \\1st step: $p(x)=6x$\r\n \\2nd step: $p(x)=6x\cdot(x^{-1}+2) = 6 + 12x$ \\3rd step: $p(x)=6\cdot6x + 12x\cdot(x^{-1}+2) = 12 + 60x$ \\4th step: $p(x)=12\cdot6x + 60x\cdot(x^{-1}+2) = 60 + 192x$ \\5th step: $p(x)=60\cdot6x + 192x\cdot(x^{-1}+2) = 192 + 744x$

\\So there are $192+744=936$ ways for the bug never moves more than 1 unit away from orign, and $\frac{936}{6^5} = \boxed{\frac{13}{108}}.$

% \\-wwei.yu