Difference between revisions of "Harmonic sequence"
Etmetalakret (talk | contribs) (Added the rest of the article. Made some stylistic choices to make the page look better (like the fractions and concise formal definition, all liable to change)) |
Etmetalakret (talk | contribs) m (Added a practice problem) |
||
Line 14: | Line 14: | ||
== Examples == | == Examples == | ||
− | Here are some | + | Here are some example solutions that utilize harmonic sequences and series. |
=== Example 1 === | === Example 1 === | ||
Line 37: | Line 37: | ||
We will now find a closed expression for the sequence. Let <math>a_1 = 1/a</math> and <math>a_2 = 1/(a+d)</math>. Simplifying the first equation yields <math>a=1</math> and substituting this into the second equation yields <math>d = 4/3</math>. Thus, <cmath>a_n = \frac{1}{1 + \frac{4}{3}(n-1)},</cmath> and so <math>a_{2019} = 8075 / 3</math>. The answer is then <math>8075 + 3 = 8078</math>, or <math>E</math>. <math>\square</math> | We will now find a closed expression for the sequence. Let <math>a_1 = 1/a</math> and <math>a_2 = 1/(a+d)</math>. Simplifying the first equation yields <math>a=1</math> and substituting this into the second equation yields <math>d = 4/3</math>. Thus, <cmath>a_n = \frac{1}{1 + \frac{4}{3}(n-1)},</cmath> and so <math>a_{2019} = 8075 / 3</math>. The answer is then <math>8075 + 3 = 8078</math>, or <math>E</math>. <math>\square</math> | ||
− | == See Also== | + | === More Problems === |
+ | Here are some problems that utilize harmonic sequences and series. | ||
+ | |||
+ | === Introductory === | ||
+ | * [[1959 AHSME Problems#Problem 33 | 1959 ASHME Problem 33]] | ||
+ | |||
+ | == See Also == | ||
* [[Harmonic series]] | * [[Harmonic series]] | ||
* [[Arithmetic sequence]] | * [[Arithmetic sequence]] |
Revision as of 14:38, 26 November 2021
In algebra, a harmonic sequence, sometimes called a harmonic progression, is a sequence of numbers such that the difference between the reciprocals of any two consecutive terms is constant. In other words, a harmonic sequence is formed by taking the reciprocals of every term in an arithmetic sequence.
For example, and are harmonic sequences; however, and are not. By definition, can never be a term of a harmonic sequence.
More formally, a harmonic progression biconditionally satisfies A similar definition holds for infinite harmonic sequences. It appears most frequently in its three-term form: namely, that constants , , and are in harmonic progression if and only if .
Contents
Properties
Because the reciprocals of the terms in a harmonic sequence are in arithmetic progression, one can apply properties of arithmetic sequences to derive a general form for harmonic sequences. Namely, for some constants and , the terms of any harmonic sequence can be written as
A common lemma is that a sequence is in harmonic progression if and only if is the harmonic mean of and for any consecutive terms . In symbols, . This is mostly used to perform substitutions, though it occasionally serves as a definition of harmonic sequences.
Sum
A harmonic series is the sum of all the terms in a harmonic series. All infinite harmonic series diverges; this is by a limit comparison test with the series , which is referred to as the harmonic series. As for finite harmonic series, a general expression for the sum has ever been found. One must find a strategy to evaluate their sum on a case-by-case basis.
Examples
Here are some example solutions that utilize harmonic sequences and series.
Example 1
Find all real numbers such that is a harmonic sequence.
Solution: Using the harmonic mean properties of harmonic sequences, Note that would create a term of —something that breaks the definition of harmonic sequences—which eliminates them as possible solutions. We can thus multiply both sides by to get . Expanding these factors yields . Canceling and combining like terms yields . Thus, is the only solution to the equation, as desired.
Example 2
Let , , and be positive real numbers. Show that if are in harmonic progression, then is as well.
Solution: Using the harmonic mean property of harmonic sequences, we are given that , and we wish to show that . We work backwards from the latter equation.
One approach might be to add to both sides of the equation, which yields Because , , and were all defined to be positive, . Thus, we can divide both sides of the equation by to get , which was given as true.
From here, it is easy to write the proof forwards. Then , which implies that the sequence is in harmonic progression, as required.
Example 3
2019 AMC 10A Problem 15: A sequence of numbers is defined recursively by , , and for all Then can be written as , where and are relatively prime positive integers. What is ?
Solution: We simplify the series recursive formula. Taking the reciprocals of both sides, we get the equality Thus, . By an above lemma, the entire sequence is in harmonic progression, which means that we can apply tools of harmonic sequences to this problem.
We will now find a closed expression for the sequence. Let and . Simplifying the first equation yields and substituting this into the second equation yields . Thus, and so . The answer is then , or .
More Problems
Here are some problems that utilize harmonic sequences and series.