Difference between revisions of "2021 Fall AMC 10A Problems/Problem 16"

(Solution 2 (Graphing))
Line 11: Line 11:
  
 
==Solution 2 (Graphing)==
 
==Solution 2 (Graphing)==
Let <math>y_1=|\lfloor x \rfloor|</math> and <math>y_2=|\lfloor 1 - x \rfloor|=|\lfloor -(x-1) \rfloor|.</math> Note that <math>y_2</math> is a reflection of <math>y_1</math> about the <math>y</math>-axis, followed by a translation of <math>1</math> unit right.
+
Let <math>y_1=|\lfloor x \rfloor|</math> and <math>y_2=|\lfloor 1 - x \rfloor|=|\lfloor -(x-1) \rfloor|.</math>
  
 
The graph of <math>y_1</math> is shown below:
 
The graph of <math>y_1</math> is shown below:
Line 87: Line 87:
 
}
 
}
 
</asy>
 
</asy>
The graph of <math>y_2</math> is shown below:
+
Note that <math>y_2</math> is a reflection of <math>y_1</math> about the <math>y</math>-axis, followed by a translation of <math>1</math> unit right. The graph of <math>y_2</math> is shown below:
  
 
<b>DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.</b>
 
<b>DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.</b>

Revision as of 14:19, 25 November 2021

Problem

The graph of \[f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|\] is symmetric about which of the following? (Here $\lfloor x \rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) }\text{the }y\text{-axis}\qquad \textbf{(B) }\text{the line }x = 1\qquad \textbf{(C) }\text{the origin}\qquad \textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)\qquad \textbf{(E) }\text{the point }(1,0)$

Solution 1 (Piecewise Function)

IN PROGRESS AND WILL FINISH SOON. NO EDIT PLEASE. A MILLION THANKS.

~MRENTHUSIASM

Solution 2 (Graphing)

Let $y_1=|\lfloor x \rfloor|$ and $y_2=|\lfloor 1 - x \rfloor|=|\lfloor -(x-1) \rfloor|.$

The graph of $y_1$ is shown below: [asy] /* Made by MRENTHUSIASM */ size(250);   int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10;  //Draws the horizontal gridlines void horizontalLines() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));   } }  //Draws the vertical gridlines void verticalLines() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));   } }  //Draws the horizontal ticks void horizontalTicks() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((-3/16,i)--(3/16,i), black+linewidth(1));   } }  //Draws the vertical ticks void verticalTicks() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,-3/16)--(i,3/16), black+linewidth(1));   } }  //Draws and labels coordinate axes void drawLabelAxes() { 	draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); 	draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); 	label("$x$",(xMax,0),(2,0)); 	label("$y$",(0,yMax),(0,2)); }  horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes();  path P[], Q[]; for (int i = 0; i < 9; ++i) { 	P[i] = (i,i)--(i+1,i);     Q[i] = (-i,i+1)--(-i-1,i+1); } draw(P^^Q,red,"$y=|\lfloor x \rfloor|$"); for (int i = 0; i < 9; ++i) { 	dot((i,i),red);     dot((i+1,i),red,UnFill);     dot((-i-1,i+1),red);     dot((-i,i+1),red,UnFill); } [/asy] Note that $y_2$ is a reflection of $y_1$ about the $y$-axis, followed by a translation of $1$ unit right. The graph of $y_2$ is shown below:

DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.

Taking the difference, we graph $f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|,$ as shown below:

DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.

Therefore, the answer is $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.$

~MRENTHUSIASM

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png