Difference between revisions of "2021 Fall AMC 10A Problems/Problem 16"

m (Solution 2 (Graphing))
(Solution 2 (Graphing))
Line 11: Line 11:
  
 
==Solution 2 (Graphing)==
 
==Solution 2 (Graphing)==
We graph <math>y=|\lfloor x \rfloor|</math> and <math>y=|\lfloor 1 - x \rfloor|,</math> as shown below:
+
The graph of <math>y=|\lfloor x \rfloor|</math> is shown below:
 +
<asy>
 +
/* Made by MRENTHUSIASM */
 +
size(300,300);
 +
 
 +
int xMin = -10;
 +
int xMax = 10;
 +
int yMin = -10;
 +
int yMax = 10;
 +
 
 +
//Draws the horizontal gridlines
 +
void horizontalLines()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));
 +
  }
 +
}
 +
 
 +
//Draws the vertical gridlines
 +
void verticalLines()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));
 +
  }
 +
}
 +
 
 +
//Draws the horizontal ticks
 +
void horizontalTicks()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((-3/16,i)--(3/16,i), black+linewidth(1));
 +
  }
 +
}
 +
 
 +
//Draws the vertical ticks
 +
void verticalTicks()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,-3/16)--(i,3/16), black+linewidth(1));
 +
  }
 +
}
 +
 
 +
//Draws and labels coordinate axes
 +
void drawLabelAxes()
 +
{
 +
draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5));
 +
draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5));
 +
label("$x$",(xMax,0),(2,0));
 +
label("$y$",(0,yMax),(0,2));
 +
}
 +
 
 +
horizontalLines();
 +
verticalLines();
 +
horizontalTicks();
 +
verticalTicks();
 +
drawLabelAxes();
 +
 
 +
path P[], Q[];
 +
for (int i = 0; i < 9; ++i) {
 +
P[i] = (i,i)--(i+1,i);
 +
    Q[i] = (-i,i+1)--(-i-1,i+1);
 +
}
 +
draw(P^^Q,red,"$y=|\lfloor x \rfloor|$");
 +
for (int i = 0; i < 9; ++i) {
 +
dot((i,i),red);
 +
    dot((i+1,i),red,UnFill);
 +
    dot((-i-1,i+1),red);
 +
    dot((-i,i+1),red,UnFill);
 +
}
 +
</asy>
 +
The graph of <math>y=|\lfloor 1 - x \rfloor|</math> is shown below:
  
 
<b>DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.</b>
 
<b>DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.</b>

Revision as of 13:54, 25 November 2021

Problem

The graph of \[f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|\] is symmetric about which of the following? (Here $\lfloor x \rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) }\text{the }y\text{-axis}\qquad \textbf{(B) }\text{the line }x = 1\qquad \textbf{(C) }\text{the origin}\qquad \textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)\qquad \textbf{(E) }\text{the point }(1,0)$

Solution 1 (Piecewise Function)

IN PROGRESS AND WILL FINISH SOON. NO EDIT PLEASE. A MILLION THANKS.

~MRENTHUSIASM

Solution 2 (Graphing)

The graph of $y=|\lfloor x \rfloor|$ is shown below: [asy] /* Made by MRENTHUSIASM */ size(300,300);   int xMin = -10; int xMax = 10; int yMin = -10; int yMax = 10;  //Draws the horizontal gridlines void horizontalLines() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));   } }  //Draws the vertical gridlines void verticalLines() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));   } }  //Draws the horizontal ticks void horizontalTicks() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((-3/16,i)--(3/16,i), black+linewidth(1));   } }  //Draws the vertical ticks void verticalTicks() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,-3/16)--(i,3/16), black+linewidth(1));   } }  //Draws and labels coordinate axes void drawLabelAxes() { 	draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); 	draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); 	label("$x$",(xMax,0),(2,0)); 	label("$y$",(0,yMax),(0,2)); }  horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); drawLabelAxes();  path P[], Q[]; for (int i = 0; i < 9; ++i) { 	P[i] = (i,i)--(i+1,i);     Q[i] = (-i,i+1)--(-i-1,i+1); } draw(P^^Q,red,"$y=|\lfloor x \rfloor|$"); for (int i = 0; i < 9; ++i) { 	dot((i,i),red);     dot((i+1,i),red,UnFill);     dot((-i-1,i+1),red);     dot((-i,i+1),red,UnFill); } [/asy] The graph of $y=|\lfloor 1 - x \rfloor|$ is shown below:

DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.

Taking the difference, we graph $f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|,$ as shown below:

DIAGRAM WILL BE READY VERY SOON. APPRECIATE IT IF THERE'S NO EDIT AT THIS PAGE WITHIN THE NEXT HOUR.

Therefore, the answer is $\boxed{\textbf{(D) }\text{ the point }\left(\dfrac12, 0\right)}.$

~MRENTHUSIASM

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png