Difference between revisions of "2021 Fall AMC 10A Problems/Problem 15"

(Solution 2 (Similar Triangles))
(Solution 2 (Similar Triangles))
Line 17: Line 17:
 
unitsize(50);
 
unitsize(50);
 
pair A,B,C,O;
 
pair A,B,C,O;
A=origin; B=(3,3); C=(-3,3);
+
A=origin; B=(2,2); C=(-2,2);
 
O=circumcenter(A,B,C); // olympiad - circumcenter
 
O=circumcenter(A,B,C); // olympiad - circumcenter
 
draw(A--B--C--cycle);
 
draw(A--B--C--cycle);
Line 23: Line 23:
 
draw(circumcircle(A,B,C)); // olympiad - circumcircle
 
draw(circumcircle(A,B,C)); // olympiad - circumcircle
 
label("$O$",O,S);
 
label("$O$",O,S);
label("$A$",A,N);
+
label("$A$",A,S);
label("$B$",B,N);
+
label("$B$",B,E);
label("$C$",C,N);
+
label("$C$",C,W);
 +
label("$3\sqrt{6}$",(1,1),S);
 +
label("$3\sqrt{6}$",(-1,1),S);
 +
 
  
  

Revision as of 23:16, 23 November 2021

Isosceles triangle $ABC$ has $AB = AC = 3\sqrt6$, and a circle with radius $5\sqrt2$ is tangent to line $AB$ at $B$ and to line $AC$ at $C$. What is the area of the circle that passes through vertices $A$, $B$, and $C?$

$\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi$

Solution 1

Let the center of the first circle be $O.$ By Pythagorean Theorem, \[AO=\sqrt{(3\sqrt{6})^2+(5\sqrt{2})^2}=2 \sqrt{26}\] Now, notice that since $\angle ABO$ is $90$ degrees, so arc $AO$ is $180$ degrees and $AO$ is the diameter. Thus, the radius is $\sqrt{26},$ so the area is $\boxed{26\pi}.$

- kante314

Solution 2 (Similar Triangles)

[asy]  import olympiad; unitsize(50); pair A,B,C,O; A=origin; B=(2,2); C=(-2,2); O=circumcenter(A,B,C); // olympiad - circumcenter draw(A--B--C--cycle); dot(O); draw(circumcircle(A,B,C)); // olympiad - circumcircle label("$O$",O,S); label("$A$",A,S); label("$B$",B,E); label("$C$",C,W); label("$3\sqrt{6}$",(1,1),S); label("$3\sqrt{6}$",(-1,1),S);    [/asy]

Solution in Progress

~KingRavi

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png