Difference between revisions of "2021 Fall AMC 10A Problems/Problem 5"
m (→Solution 1) |
(→Solution 1) |
||
Line 5: | Line 5: | ||
== Solution 1== | == Solution 1== | ||
− | By divisibility rules, when <math>A=1,</math> the number <math>202101</math> is divisible by <math>3.</math> When <math>A=3,</math> the number <math>202103</math> is divisible by <math>11.</math> When <math>A=5,</math> the number <math>202105</math> is divisible by <math>5.</math> When <math>A=7,</math> the number <math>202107</math> is divisible by <math>3.</math> Thus, by the process of elimination we have that the answer is <math>\boxed{\textbf{(E)} | + | By divisibility rules, when <math>A=1,</math> the number <math>202101</math> is divisible by <math>3.</math> When <math>A=3,</math> the number <math>202103</math> is divisible by <math>11.</math> When <math>A=5,</math> the number <math>202105</math> is divisible by <math>5.</math> When <math>A=7,</math> the number <math>202107</math> is divisible by <math>3.</math> Thus, by the process of elimination we have that the answer is <math>\boxed{\textbf{(E)}}</math> |
~NH14 | ~NH14 |
Revision as of 16:53, 23 November 2021
The six-digit number is prime for only one digit What is
Solution 1
By divisibility rules, when the number is divisible by When the number is divisible by When the number is divisible by When the number is divisible by Thus, by the process of elimination we have that the answer is
~NH14
See Also
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.