Difference between revisions of "2021 Fall AMC 10A Problems/Problem 16"
MRENTHUSIASM (talk | contribs) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
The graph of <math>f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|</math> is symmetric about which of the following? (Here <math>\lfloor x \rfloor</math> is the greatest integer not exceeding <math>x</math>.) | The graph of <math>f(x) = |\lfloor x \rfloor| - |\lfloor 1 - x \rfloor|</math> is symmetric about which of the following? (Here <math>\lfloor x \rfloor</math> is the greatest integer not exceeding <math>x</math>.) | ||
<math>\textbf{(A) }</math> the <math>y</math>-axis <math>\qquad \textbf{(B) }</math> the line <math>x = 1</math> <math>\qquad \textbf{(C) }</math> the origin <math>\qquad | <math>\textbf{(A) }</math> the <math>y</math>-axis <math>\qquad \textbf{(B) }</math> the line <math>x = 1</math> <math>\qquad \textbf{(C) }</math> the origin <math>\qquad | ||
\textbf{(D) }</math> the point <math>\left(\dfrac12, 0\right)</math> <math>\qquad \textbf{(E) }</math> the point <math>(1,0)</math> | \textbf{(D) }</math> the point <math>\left(\dfrac12, 0\right)</math> <math>\qquad \textbf{(E) }</math> the point <math>(1,0)</math> | ||
+ | |||
+ | ==Solution== | ||
+ | <b>IN PROGRESS AND WILL FINISH SOON. NO EDIT PLEASE. A MILLION THANKS.</b> | ||
+ | |||
+ | ~MRENTHUSIASM | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2021 Fall|ab=A|num-b=15|num-a=17}} | {{AMC10 box|year=2021 Fall|ab=A|num-b=15|num-a=17}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:34, 24 November 2021
Problem
The graph of is symmetric about which of the following? (Here is the greatest integer not exceeding .)
the -axis the line the origin the point the point
Solution
IN PROGRESS AND WILL FINISH SOON. NO EDIT PLEASE. A MILLION THANKS.
~MRENTHUSIASM
See Also
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.