Difference between revisions of "2021 Fall AMC 10A Problems/Problem 15"
Line 12: | Line 12: | ||
{{AMC10 box|year=2021 Fall|ab=A|num-b=14|num-a=16}} | {{AMC10 box|year=2021 Fall|ab=A|num-b=14|num-a=16}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
+ | |||
+ | ==Solution 2 (Similar Triangles)== | ||
+ | |||
+ | Solution in Progress | ||
+ | |||
+ | ~KingRavi |
Revision as of 21:24, 23 November 2021
Isosceles triangle has , and a circle with radius is tangent to line at and to line at . What is the area of the circle that passes through vertices , , and
Solution 1
Let the center of the first circle be By Pythagorean Theorem, Now, notice that since is degrees, so arc is degrees and is the diameter. Thus, the radius is so the area is
- kante314
See Also
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
Solution 2 (Similar Triangles)
Solution in Progress
~KingRavi