Difference between revisions of "2021 Fall AMC 10B Problems/Problem 15"
(→See Also) |
(→Solution) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | In square <math>ABCD</math>, points <math>P</math> and <math>Q</math> lie on <math>\overline{AD}</math> and <math>\overline{AB}</math>, respectively. Segments <math>\overline{BP}</math> and <math>\overline{CQ}</math> intersect at right angles at <math>R</math>, with <math>BR = 6</math> and <math>PR = 7</math>. What is the area of the square? | ||
+ | |||
+ | <asy> | ||
+ | size(170); | ||
+ | defaultpen(linewidth(0.6)+fontsize(10)); | ||
+ | real r = 3.5; | ||
+ | pair A = origin, B = (5,0), C = (5,5), D = (0,5), P = (0,r), Q = (5-r,0), | ||
+ | R = intersectionpoint(B--P,C--Q); | ||
+ | draw(A--B--C--D--A^^B--P^^C--Q^^rightanglemark(P,R,C,7)); | ||
+ | dot("$A$",A,S); | ||
+ | dot("$B$",B,S); | ||
+ | dot("$C$",C,N); | ||
+ | dot("$D$",D,N); | ||
+ | dot("$Q$",Q,S); | ||
+ | dot("$P$",P,W); | ||
+ | dot("$R$",R,1.3*S); | ||
+ | label("$7$",(P+R)/2,NE); | ||
+ | label("$6$",(R+B)/2,NE); | ||
+ | </asy> | ||
+ | |||
+ | <math>\textbf{(A) }85\qquad\textbf{(B) }93\qquad\textbf{(C) }100\qquad\textbf{(D) }117\qquad\textbf{(E) }125</math> | ||
+ | |||
==Solution== | ==Solution== | ||
Revision as of 11:30, 23 November 2021
Problem
In square , points and lie on and , respectively. Segments and intersect at right angles at , with and . What is the area of the square?
Solution
Note that Then, it follows that Thus, Define to be the length of side then Because is the altitude of the triangle, we can use the property that Substituting the given lengths, we have Solving, gives and We eliminate the possibilty of because Thus, the side lengnth of the square, by Pythagorean Theorem, is Thus, the area of the sqaure is Thus, the answer is
~NH14
See Also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.