Difference between revisions of "2021 Fall AMC 12A Problems/Problem 2"

(Created page with "Menkara has a <math>4 \times 6</math> index card. If she shortens the length of one side of this card by <math>1</math> inch, the card would have area <math>18</math> square i...")
 
(move from 10A)
Line 1: Line 1:
 +
== Problem ==
 +
 
Menkara has a <math>4 \times 6</math> index card. If she shortens the length of one side of this card by <math>1</math> inch, the card would have area <math>18</math> square inches. What would the area of the card be in square inches if instead she shortens the length of the other side by <math>1</math> inch?
 
Menkara has a <math>4 \times 6</math> index card. If she shortens the length of one side of this card by <math>1</math> inch, the card would have area <math>18</math> square inches. What would the area of the card be in square inches if instead she shortens the length of the other side by <math>1</math> inch?
  
<math>\textbf{(A) }16\qquad\textbf{(B) }17\qquad\textbf{(C) }18\qquad\textbf{(D) }19\qquad\textbf{(E) }20</math>
+
<math>\textbf{(A) } 16 \qquad\textbf{(B) } 17 \qquad\textbf{(C) } 18 \qquad\textbf{(D) } 19 \qquad\textbf{(E) } 20</math>
 +
 
 +
== Solution ==
 +
We construct the following table:
 +
<cmath>\begin{array}{c||c|c||c}
 +
& & & \\ [-2.5ex]
 +
\textbf{Scenario} & \textbf{Length} & \textbf{Width} & \textbf{Area} \\ [0.5ex]
 +
\hline
 +
& & & \\ [-2ex]
 +
\textbf{Initial} & 4 & 6 & 24 \\
 +
\textbf{Menkara shortens one side.} & 3 & 6 & 18 \\
 +
\textbf{Menkara shortens other side instead.} & 4 & 5 & 20
 +
\end{array}</cmath>
 +
Therefore, the answer is <math>\boxed{\textbf{(E) } 20}.</math>
 +
 
 +
~MRENTHUSIASM
 +
 
 +
==See Also==
 +
{{AMC12 box|year=2021 Fall|ab=A|num-b=1|num-a=3}}
 +
{{AMC10 box|year=2021 Fall|ab=A|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Revision as of 17:24, 23 November 2021

Problem

Menkara has a $4 \times 6$ index card. If she shortens the length of one side of this card by $1$ inch, the card would have area $18$ square inches. What would the area of the card be in square inches if instead she shortens the length of the other side by $1$ inch?

$\textbf{(A) } 16 \qquad\textbf{(B) } 17 \qquad\textbf{(C) } 18 \qquad\textbf{(D) } 19 \qquad\textbf{(E) } 20$

Solution

We construct the following table: \[\begin{array}{c||c|c||c} & & & \\ [-2.5ex] \textbf{Scenario} & \textbf{Length} & \textbf{Width} & \textbf{Area} \\ [0.5ex] \hline & & & \\ [-2ex] \textbf{Initial} & 4 & 6 & 24 \\ \textbf{Menkara shortens one side.} & 3 & 6 & 18 \\ \textbf{Menkara shortens other side instead.} & 4 & 5 & 20 \end{array}\] Therefore, the answer is $\boxed{\textbf{(E) } 20}.$

~MRENTHUSIASM

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png