Difference between revisions of "2021 Fall AMC 10B Problems/Problem 6"
(Created page with "==Problem== The least positive integer with exactly <math>2021</math> distinct positive divisors can be written in the form <math>m \cdot 6^k</math>, where <math>m</math> and...") |
(→Solution) |
||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | Let this positive integer be written as <math>p_1^{e_1}\cdot p_2^{e_2}</math>. The number of factors of this number is therefore <math>(e_1+1) \cdot (e_2+1)</math>, and this must equal 2021. The prime factorization of 2021 is <math>43 \cdot 47</math>, so <math>e_1+1 = 43 \implies e_1=42</math> and <math>e_2+1=47\implies e_2=46</math>. To minimize this integer, we set <math>p_1 = 3</math> and <math>p_2 = 2</math>. Then this integer is 3^{42} \cdot 2^{46} = 2^4 \cdot 2^{42} \cdot 3^{42} = 16 \cdot 6^{42}<math>. | + | Let this positive integer be written as <math>p_1^{e_1}\cdot p_2^{e_2}</math>. The number of factors of this number is therefore <math>(e_1+1) \cdot (e_2+1)</math>, and this must equal 2021. The prime factorization of 2021 is <math>43 \cdot 47</math>, so <math>e_1+1 = 43 \implies e_1=42</math> and <math>e_2+1=47\implies e_2=46</math>. To minimize this integer, we set <math>p_1 = 3</math> and <math>p_2 = 2</math>. Then this integer is <math>3^{42} \cdot 2^{46} = 2^4 \cdot 2^{42} \cdot 3^{42} = 16 \cdot 6^{42}</math>. |
− | Now < | + | Now <math>m=16</math> and <math>k=42</math> so <math>m+k = 16 + 42 = 58 = \boxed{B}</math> |
+ | |||
+ | ~KingRavi |
Revision as of 00:42, 23 November 2021
Problem
The least positive integer with exactly distinct positive divisors can be written in the form , where and are integers and is not a divisor of . What is
Solution
Let this positive integer be written as . The number of factors of this number is therefore , and this must equal 2021. The prime factorization of 2021 is , so and . To minimize this integer, we set and . Then this integer is . Now and so
~KingRavi